

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� � � � � � � 	 � �
 �� �� � �

 � � � � �
 � �
 � ��

� ���! � �� �� " �# ��$ % �& �' �$ # �

$ # �

� ���� � � �" �# ��$ % �& �' �$ # �& ' �

�

(� � ��) �� � 	� � �& * �

���$ �+ , ��	�� �� ��

� � ��- �
� �� �� � � � ��

��

� � � � �� � � � � � �

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$�

Contents

1. Tutorial 1: Building a phone book 5

2. Tutorial 2: Simulating a petrol service-station 18

3. The language 31
3.1 Lesson 1: Types and values 37
3.2 Lesson 2: Functions and terms 41
3.3 Lesson 3: The dynamic part 55

4. Syntax 63

5. Function list 67
5.1 Boolean functions 74
5.2 Numerical functions 76
5.3 Real functions 78
5.4 String functions 80
5.5 Tuple functions 81
5.6 Product functions 81
5.7 Set functions 81
5.8 Statistical functions 82
5.9 List functions 83
5.10 Mapping functions 85
5.11 Void functions 85
5.12 Array functions 86
5.13 List functions 86
5.14 Bag functions 87

6. Bibliography 88

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

#�

Introduction

ExSpect ExSpect, Executable Specification Tool, is a powerful business tool giving

organisations the ability to model, monitor and analyse business processes
effectively and efficiently. By tracking workloads and money, goods, and
information flows you can use ExSpect to determine the service level of
your organisation. ExSpect offers the potential for every conceivable kind of
simulation and so helps you reach decisions on cost reductions and large-
scale infrastructure investment program’s. ExSpect has a full-graphic user-
interface and a sound formal basis, developed in close co-operation with
Eindhoven University of Technology, since 1980. ExSpect users are able to
build executable models with ease and speed. Changing developed models
is an even simpler matter, since a library of building blocks is automatically
generated during development. An advantage of ExSpect is that it is
possible to use application libraries specifically prepared for particular
fields. Libraries are available for workflow, logistics, administrative
processes and more specific business situations.

Deloitte & Touche Deloitte & Touche Bakkenist offers you a helpdesk for answering your
Bakkenist questions related to the tool and modelling. A total service package,

including various standard and specially tailored courses plus a workshop is
available. When desired, staff from Deloitte&Touche Bakkenist will assist
you in developing your business applications.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

&�

This manual This manual starts with two tutorial cases to get familiar with the tool
ExSpect. These cases are used to show the use of ExSpect for creating
executable specifications of high-level Petri nets. It is recommended to use
the on line help for further explanation on the user interface. The first
tutorial illustrates the creation of a small telephone number database. The
resulting specification is directly executable. This first tutorial gets the user
acquainted with the use of the tool. The second tutorial uses predefined
building blocks to demonstrate the power of simulation.

 The tool tutorials are followed by a language tutorial (Chapter 3). All
features of the ExSpect language are discussed and illustrated with useful
examples.

 Chapter 4 contains a formal description of the syntax of the ExSpect

language. Chapter 5 is a reference manual containing all library functions.

 The last chapter is the bibliography. It contains numerous useful references

to related material.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

'�

1. Tutorial 1: Building a phone book

Introduction This tutorial will give an introduction to the way a specification of a simple

information system is built. The purpose of this tutorial is to show the reader
what considerations and steps are taken when building an actual system.

Description of The information system we are going to discuss is a phone book. A phone
the case book is a table with information about phone numbers. In Table 1 an

example of this information is given. The phone book is a very simple
example of an information system. But nevertheless this example contains
most ingredients that are relevant in larger systems.

Name Phone number

Jack 020-2210922
Gary +39-227-644413
Mary 040-2471127
Frank 045-5678230
Patrick +01-518-2766261

Table 1

 A user of a phone book can do four things:

• Look up a phone number.
• Add a new phone number to the phone book.
• Remove an existing phone number from the phone book.
• Change an existing number in the phone book.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

*�

Let’s examine these four actions:

• If a user searches a phone number (s)he has to enter a name. The answer

of the phone book will be the number belonging to this name. If the
name doesn’t exist in the phone book, the output of the phone book will
be: ‘not found’.

• If the user wants to add a phone number (s)he has to enter a name and a
phone number.

• If a user wants to remove a phone number, only the name belonging to
the phone number has to be given.

• To change a phone number a name and a phone number have to be
given.

 To keep this example simple we assume the following:
 First of all, phone numbers that are to be changed or removed are always in

the phone book. Second, phone numbers that are added are not already in
the phone book. Finally when a search for a phone number is performed the
entered name is uniquely present in the phone book. A more realistic system
won’ t be based on these assumptions and will have to act accordingly in
these kinds of events.

Getting started Before we start with the actual building of a system some general actions

have to be taken.

1. Start ExSpect .
2. Next a new file has to be defined for the specification. Selecting New

from the File menu does this.
3. By selecting Save As from the File menu we can give our file an unique

name, we have chosen the name: phone.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

.�

4. Every specification needs at least one system, so we have to define a
system for our phone book. To do this we select System Definitions
from the Components menu. Now a window opens with all defined
systems (this window is empty in our case for the simple reason that we
have not yet defined a system). Now we click with the left mouse button
on the New button; a window opens in which we can give a name to our
system (the default name is ‘System’), we choose the name Phone_book

(has to be one word). After clicking the OK button with the left mouse
button the System Definition window of the Phone_book system will
open.

Building the system In figure 1 the process we are going to design is given. But before we start

defining this phone book, we recall the (informal) description earlier.

number_to_search

answer

entry_to_add

entry_to_remove

entry_to_change

contents_phone_book

search

add

remove

change

Placing channels The user can initiate four actions (searching, adding, removing and changing). Therefore, we need to define four input channels. These channels are:

Figure 1

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/�

channel answer.

1. Click with the left mouse button on the Channel button: .
2. Click with the left mouse button in the System Definition window at the

place you want to put the channel. Now a channel with an automatically
generated name will appear.

3. We repeat 1 and 2 until we have five channels in the definition window.
4. By double clicking a channel with the left mouse button, the Channel

Definition window will open. In the Name box of this window we can
give each channel an appropriate name (use the names we have chosen
above).

5. Press the OK button to save and close the Channel Definition window.

Placing stores The phone book has to keep information about the phone numbers and

names that are put into it. Therefore we have to define a store.

1. Click with the left mouse button on the Store button: .
2. Click with the left mouse button in the System Definition window at the

place you want to put the store. Now a store with an automatically
generated name will appear.

3. By double clicking a store with the left mouse button the Store
Definition window will appear. In the Name box of this window we can
give the store its appropriate name. The name we use for our store is
contents_phone_book.

4. Press the OK button to save and close the Store Definition window.

 The contents of the resulting system definition window will be something

like Figure 2.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

��

number_to_search

answer

entry_to_add

entry_to_remove

entry_to_change

contents_phone_book

Figure 2

Defining and In the next phase we have to think about the types that need to
assigning types be assigned to the channels and stores. Through the channel

number_to_search a name can be entered, so the type of this channel must be
str (string). The assigning is done in the following way:

1. Double-click with the left mouse button the channel number_to_search.

The Channel Definition window will open.
2. Enter str in the Type box.
3. Press OK to save and close the Channel Definition window.

 The channel answer produces the searched phone number or (if no such

name exists in the phone book) ‘Not found’ , so the type we assign to answer
is also str. By using the channel entry_to_add we can add a new entry (name
and phone number) to the phonebook. Therefore we define a type entry as
the tuple type [name:str, phone_number:str].

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

�%�

1. Select type definitions from the components menu. Now the Type
Definitions window will open.

2. Add a new type definition by pressing New, in the Type Definitions
window.

3. Enter entry in the name box of the Type Definition window.
4. In the definition box the type can be specified, in our case [name:str,

phone_number:str].
5. Press OK to save and close the Type Definition window.
6. Press CLOSE to close the Type Definitions window.
7. Assign entry to entry_to_add.

 The channel entry_to_remove can be used to enter a name to remove a name

and the entry belonging to this name. Therefore we assign str to the channel
entry_to_remove. The channel entry_to_change is used to change existing
phone numbers, so we assign the type entry to entry_to_change. This leaves
the type of the store contents_phone_book. This is a set of entries so the store
contents_phone_book has the type $entry.

Placing processors After assigning types to all the channels and stores, we have to define the

active components of the specification (processors). In our case we need not
define any subsystems because of the simplicity of the system to be
designed. So we add four processors, one for each action that can be taken.
The names of these processors will be: search, add, remove and change.

1. Click with the left mouse button on the Processor button: .
2. Click with the left mouse button in the System Definition window at the

place you want to put the processor. Now a processor with an
automatically generated name will appear.

3. We repeat 1 and 2 until we have four processors in the System
Definition window.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

���

4. By double-clicking a processor the Processor Definition window will
open. In the Name box of this window we can give each processor it’ s
appropriate name (use the names search, add, remove and change).

Connecting Before we can finish the processor definitions, we have to
places/stores place the connections between our objects. The following
and processors connections have to be made:

1. The store contents_phone_book has to be connected to all processors.
2. A connection from the channel entry_to_add to the processor add.
3. A connection from the channel number_to_search to the processor

search.
4. A connection from the processor search to the channel answer.
5. A connection from the channel entry_to_remove to the processor remove.
6. A connection from the channel entry_to_change to the processor change.
7. Click with the left mouse button on the Connector button: .
8. Select the source of your connection (for example number_to_search).

Moving the mouse pointer above the object and pressing the left mouse
button does selecting.

9. Select the destination of your connection (for example search)
10. Repeat 1,2 and 3 until all connections are made.

 Note: By double-clicking the connector button, several connections can be

made without having to select the connector button again. The same can be
done when placing channels, stores, systems and processors. Pressing the
pointer tool button does deselecting a button .

The contents of the resulting System Definition window is shown in

 Figure 3.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

�$�

number_to_search

answer

entry_to_add

entry_to_remove

entry_to_change

contents_phone_book

search

add

remove

change

Figure 3

 Should one of the connections accidentally have been placed wrong, then

the connection has to be removed and the processor definition updated. The
following can be done to correct such an error:

1. Double click the wrongly connected processor, the Processor Definition

window will open.
2. Select the wrong connection in the Connections box, by pressing the

button in front of the connection in question.
3. Select Delete from the Edit menu.
4. Press OK to save and close the Processor Definition window.

 The next step is to give the processors the required functionality so they will

have the appropriate input/output behaviour. In the remainder the
functionality of each processor is given and described. This functionality is
entered in the definition box of the Processor Definition window. The
inexperienced reader probably will not understand the full functionality that

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

�#�

is entered. This is no problem since the purpose of this tutorial is to give the
reader an idea on how to work with ExSpect. The language that is used to
specify the behaviour is explained in detail in chapter 3.

Processor: search The way we want the processor search to behave is the following:
 if the entered query is in the phone book
 then return the phone number
 else return a message that the number was not found.

 This is implemented in the following way:

1. Double-click the processor search.
2. Enter the following text in the definition box of the processor definition

window:
if number_to_search elt rng([x:contents_phone_book|x@name])

 then

answer <- pick(set([x:contents_phone_book|x@name =

number_to_search]))@phone_number

else

 answer <- 'not found'
 fi

3. Press OK to save and close the processor definition window.

Processor: add The processor add inserts a new phone number into the phone book. This is

implemented in the following way:

1. Double-click the processor add.
2. Enter the following text in the definition box of the processor definition

window:
 contents_phone_book <- entry_to_add ins contents_phone_book

3. Press OK to save and close the processor definition window.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

�&�

 Processor: change The processor change changes the number belonging to one of the names in
the phone book. Inserting a new (changed) entry and removing the old one
from the phone book does this. This is implemented in the following way:

1. Double-click the processor change.
2. Enter the following text in the definition box of the processor definition

window:
 contents_phone_book <- entry_to_change ins

 (set([x:contents_phone_book|x@name != entry_to_change@name]))
3. Press OK to save and close the processor definition window.

Processor: remove The processor remove removes an entry (with a given name) from the phone

book. This is implemented in the following way:

1. Double-click the processor remove.
2. Enter the following text in the definition box of the processor definition

window:

contents_phone_book <- set([x:contents_phone_book|x@name !=

entry_to_remove])

3. Press OK to save and close the processor definition window.

 Now the specification is finished and ready to be checked. Clicking the

Translate button does this: . This will first save the specification and then
check it for mistakes. If we do this the following translation error will
appear: ‘store/ phone_book/contents_phone_book: empty init value’ . By
double clicking this error with the left mouse button, the Store Definition
window will open. Here we see that we have forgotten to give our store
(contents_phone_book) an initial value. We choose that the initial value of
contents_phone_book is empty. Therefore we insert {} in the Initial Value
box. Now we translate our specification again and we see that there are no
error messages left.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

�'�

The use of the phone book

 In the following we describe the use of our information system. But before

we can do this we have to start the simulation by pressing the simulation
button: . This will initiate three consecutive actions: first the
specification will be saved, then checked and finally the simulation will be
started.

Adding entries to the We start by entering several entries into our phone book.
phone book

1. Select the place entry_to_add.
2. Press the right mouse button and select Add Token from the pop-up

menu.
3. Enter a valid entry in the Add Token window and press the Apply

button. For this example we have entered the first three rows from
Table 1. After this pressing the Close button closes the Add token
window.

4. Next we start the simulation by pressing the Play button . We see that
the new entries are added to contents_phone_book.

Adding a table Now we want to check if the right entries are added to
dashboard object contents_phone_book. Adding a dashboard object is the best way.

1. First activate the dashboard window by pressing the Dashboard button:
.

2. Press the Table button: and move the mouse pointer in the
Dashboard window. Now press the left mouse button and an indication
of a table will appear.

3. Double-click the indication of the table with the left mouse button and
the Dashboard Object Properties window appears.

4. First we give a name to the dashboard object by entering a name in the
Name box.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

�*�

5. Then we enter a place or store of which we want to see the contents in
the place box. In our case this is Phone_book.contents_phone_book
(System name, dot, name of the channel/store).

6. Click OK to save and close the Dashboard Object Properties window.
7. In the dashboard object the contents of contents_phone_book can be seen.

Changing entries in Now that these three entries are entered we would like to
the phone book change one of them. So suppose Gary moves and gets a new number say

040-2471234.

1. Select the channel entry_to_change.
2. Press the right mouse-button and select Add Token from the pop-up

menu.
3. Enter Gary in the Name field and 040-2471234 in the Number field.
4. Press the Play button. We see that contents_phone_book is updated.
5. Check the value of contents_phone_book by looking at the dashboard

table.

Removing entries Now we want to remove an entry from our phone book. So
from the phone book suppose Mary marries Gary and moves in with him. Now we can remove

Mary from our phone book.

1. Select the channel entry_to_remove.
2. Press the right mouse-button and select Add token from the pop-up

menu.
3. Enter Mary in the Add Token window.
4. Press the Play button. We see that contents_phone_book is updated.
5. Check the value of contents_phone_book by looking at the dashboard

table object.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

�.�

Searching numbers in Finally we want to search for a phone number. Since it has
the phone book been a long time since we spoke Jack we are going to search for his phone

number.

1. Select the place number_to_search.
2. Press the right mouse button and select Add Token from the pop-up

menu.
3. Enter Jack in the Add Token window.
4. Press the Play button. Now we see that a number is searched in the

phone book and an anwer is produced in the channel answer.

 To check the contents of answer we need to add another dashboard object to

the dashboard. This time we choose the Textbox dashboard object.

1. Press the Textbox button: and move the mouse pointer in the
Dashboard window. Now press the left mouse button and a Texbox will
appear.

2. Press the connector button.
3. Select the channel answer in the System Definition window.
4. Select the Textbox in the Dashboard window. Now the Textbox will

show the contents of answer. (Note: the name of the Texbox is
automatically changed to answer).

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

�/�

2. Tutorial 2: Simulating a petrol service-station

Introduction In this tutorial the case of a petrol service station is used to explain the basic

principles of simulation with ExSpect. Simulation is an analysis technique
that mimics reality by using a model. It enables experimentation with a
model of the reality. This is useful when real experiments are expensive or
dangerous.

Case description A taxicab company has its own petrol service station where the taxi drivers

can refuel their cars. A taxi driver that needs to refuel his car is obliged to
drive to this service station. The station has a queue that can hold three cars.
When there is no room in the queue the taxi driver must drive on and go to
another service station. It takes between 2 and 5 minutes to refuel a car and
there is one petrol pump available.

 The taxicab company is growing and lately 8% of the refuelling takes place

at another service station. Management suspects that taxi drivers go directly
to other service stations to win time. They want to use simulation to find
answers to the following questions:

• Do taxi drivers evade the rule to go to the company’ s service station

first?
• Taxi drivers complain about waiting times of ten minutes or more. Is

this true?
• What is the best investment alternative for the service station? Should

the waiting area for the queue be enlarged, should a faster one replace
the pump or should a second pump be added?

Getting started In this tutorial an incomplete model of the Taxicab Company has to be

finished so it can be used to run a simulation. What has been omitted from
the model is the petrol service station.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

���

 Perform the following steps to get a copy of an ExSpect specification of the
environment of the petrol service station.

1. Start ExSpect
2. Select Open from the File menu.
3. In the Folders box select the folder ‘Tutorial\Petrol Service Station’ .
4. In the File Name box select the file ‘Template.ex’ .
5. Choose OK.
6. Select Save As from the File menu.
7. In the File Name box type a name for the copy of the file, for example

‘pump.ex’
8. Choose OK.

The main system In the System Definitions window double click the system main to view the

system petrol_service_station and its environment (see Figure 4).

generate_arrivals

car_arrived

car_drives_on

car_refueled

count_cars_driven_on

measue_throughput_timepetrol_service_station

 Figure 4 - System main

All interaction of the service station with its environment is the arrival or
departure of cars. The environment is built with building blocks from a
library. The system labelled generate_arrivals is an installation of the
building block generator. This system generates tokens of type Car and
places them in the channel car_arrived. This models the arrival of cars at the

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$ % �

service station. The system petrol_service_station consumes the cars from the
channel car_arrived and depending on the situation puts them in the channel
car_refueled or car_drives_on. The systems measure_throughput_time and
count_cars_driven_on collect all kinds of simulation information.

 Double click the system petrol_service_station. This is the system that has to

be completed. It has one input connector (car_arrived) and two output
connectors (car_drives_on and car_refueled). Figure 5 shows the subsystem
we are going to build.

i

car_arrived

o

car_refueled

o

car_drives_on

queue

pump_free

being_served

number_of_cars_in_queue

decide start_service end_service

random

 Figure 5 - System petrol_service_station

Adding channels After arrival in the service station a car will enter the queue when there is

enough room for it, otherwise it will drive on. These two possible outcomes
of the decision are modelled by the channels queue and car_drives_on (see
 Figure 5). The decision is modelled by the processor decide. The processors
start_service and end_service model the beginning and the ending of the
service. When a car is waiting and the pump is free the processor
start_service fires. The car is moved from the queue to the channel
being_served. When the service is ready the transition moves the car to the
output channel car_refueled.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$ ��

 To add the channels do the following:

1. In the submenu Add of the menu Object select Channel (or use the
channel button).

2. Move the mouse pointer over the gas station system window. The cursor
will change into the symbol for a channel.

3. Click the left mouse button at the place you want to put the channel.
4. Double click the new channel. A property window appears.
5. In the Name box type queue.
6. Choose OK.

 Repeat this for the channel pump_free and being_served.

Adding types To make the definition of the channels complete we have to specify the

appropriate type.

 Make the following changes:

1. Double click the channel queue. A property window appears.
2. In the Type box select the type Car.
3. Choose OK.

 Repeat this for the channel being_served. (Tip: when you place a channel
you can use the right mousebutton. A pop-up menu appears from which you
can select the channel type.)

 The channels being_served and pump_free model the situation that a car is

being served or not. In the initial state there is one token in the channel
pump_free. The type of this channel is not important. The fact that the pump
is free is denoted by the fact that the channel contains a token. The type of
that token is not relevant. To keep the specification simple we choose the
type str.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$ $ �

1. Double click the channel pump_free. A property window appears.
2. In the Type box select the type str.
3. In the Initial Tokens list type ’pump’ in the first row.
4. Choose OK.

Adding a store The processor decide needs to know the number of cars in the queue. This

number is kept in the store number_of_cars_in_queue. When a car is put in
the queue the value of this store is increased by one. When a car is removed
from the queue the value is decreased by one.

 Add the store to the specification by performing the following steps:

1. In the submenu Add of the Object menu select Store (or use the store
button:).

2. Move the mouse pointer over the gas station system window. The cursor
will change into the symbol for a store.

3. Click the left mouse button at the place you want to put the store.
4. Double click the new store. A property window appears.
5. In the Name box type number_of_cars_in_queue.
6. In the Type box select the type num.
7. Choose OK.

Adding processors Now that all channels and stores are created it is time to create the

processors. They have already been discussed in the previous paragraph:

1. In the submenu Add of the menu Object select Processor. (or use the
processor button).

2. Move the mouse pointer over the gas station system window. The cursor
will change into the symbol for a processor.

3. Click the left mouse button at the place you want to put the processor.
4. Double click the new processor. The Processor Definitions window

appears.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$ # �

5. In the Name box type decide.
6. Choose OK.

 Repeat this for the processors start_service and end_service.

Adding connections Before we can finish the definition of the processors the

channels/stores/pins and the processors have to be connected. Connecting
channels/stores/pins and processors is straightforward.

 To connect the pin car_arrived with the processor decide do the following:

1. Click on the Connector button .
2. Click on the source of the connection. In this case this is the input pin

car_arrived.
3. Click on the destination of the connection. In this case this is the

processor decide.

 Repeat this for the following connections:

• The store numbers_of_cars_in_queue is connected to the processors
decide and start_service.

• A connection from the processor decide to the channel queue.
• A connection from the processor decide to the output pin car_drives_on.
• A connection from the channel queue to the processor start_service.
• A connection from the processor start_service to the channel

being_served.
• A connection from the channel being_served to the processor

end_service.
• A connection from the processor end_service to the output pin

car_refueled.
• A connection from the processor end_service to the channel pump_free.
• A connection from the processor pump_free to start_service.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$ & �

Defining processors The last step in the creation of the service station is the definition of the
processors. Remember that the processor decide had to move the car from
car_arrived to queue when there was enough room in the queue, otherwise it
had to be moved to the channel drive_on. Also remember that in the first
case the number in number_of_cars_in_queue had to be increased.

 The following steps achieve this:

1. Double click the processor decide
2. In the definition box type the following:

if number_of_cars_in_queue < 3 then
 queue <- car_arrived,
 number_of_cars_in_queue <- number_of_cars_in_queue +1
else
 car_drives_on <- car_arrived
fi

3. Choose OK.

 An assignment statement is used to move a token from one channel to

another. In the ExSpect language an assignment statement looks as follows:

 Output channel <- Input channel

 For example the statement queue <- car_arrived in the second line of the
processor means that a token is moved from the channel car_arrived to the
channel queue. Another language feature that is used is the if statement that
looks like this:

 if expression then alternative1 else alternative2 fi

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$ ' �

 When expression evaluates to true alternative1 is performed otherwise
alternative2. In the example it is used to make the decision.

 The next chapter explains the ExSpect language in more detail.

Adding a From the case description we know that it takes between 2 and 5 minutes to
random store refuel a car. We assume that this service time has a uniform distribution. To

model this random behaviour the processor start_service is connected with a
random store. A random store is a store that always contains a new random
number.

 To add the random store do the following:

1. In the submenu Add of the menu Object select Random Store. (Tip: use
the random store button: .)

2. Move the mouse pointer over the gas station system window. The cursor
will change into the symbol for a random store.

3. Click the left mouse button at the place you want to put the store.
4. Connect the store with the processor start_service.

 Now the definition of the processor start_service can be added. Put the

following definition in the processor start_service:

 number_of_cars_in_queue <- number_of_cars_in_queue -1,

 being_served <- queue delay uniform(2.0,5.0,random)

 The keyword delay in the last statement specifies that the token becomes

available in the channel filling_tank only after a certain amount of time. This
models the time it takes to refuel the car. In the next chapter this will be
explained in more detail.

 To finish the model add the following definition for the processor

end_service:

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$ * �

 pump_free <- 'pump',

 car_refueled <- being_served

Running a simulation The model that has been created in the previous paragraphs can now be

executed. To start the simulation mode do the following:

1. In the Tools menu choose Simulate (or press the simulation button).

 An Incompleteness Errors window appears containing an error message

about an empty initial value. We forgot to enter an initial token value for the
store number_of_cars_in_queue.

 This error must be resolved first:

1. Double-click the error message. The store definition window for the
store number_of_cars_in_queue appears.

2. In the Initial Value box type 0.
3. Choose OK

 Now we can start the simulation:

1. Push the simulation button. When the specification is free of errors a
System Animation window will appear for the system main.

2. Double click the system gas station to get its System Animation
window.

3. In the menu Simulation select Play (or press the Play button:).

 In the System Animation window you can see the tokens flow through the

process. The simulation time is shown in the right bottom corner of the
screen. If you run the simulation long enough it will halt automatically.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$. �

Dashboard objects It is not directly observable whether the queue is full or not. We will add a
traffic light to the picture to solve this.

1. Press the Halt button: . The simulation will pause.
2. Press the Animation Dashboard object button: .
3. Move the mouse pointer over the gas station system animation window.

The cursor will change into the symbol for an animation dashboard
object.

4. Click the left mouse button at the place you want to put the animation
object.

5. Double click the new animation object. A Dashboard Objects Properties
window appears.

6. In the Label box type ‘Traffic light’ .
7. In the Place box type

main.petrol_service_station.number_of_cars_in_queue.
8. In the first row of the Animation Frames list type ‘green.bmp’
9. In the second row of the Animation Frames list type ‘green.bmp’
10. In the third row of the Animation Frames list type ‘green.bmp’
11. In the fourth row of the Animation Frames list type ‘red.bmp’
12. Size the animation object to make it look like a traffic light.
13. Choose OK.

 It is also possible to view the number of tokens in a channel:

1. Double click the channel queue. A property window appears.
2. Check the checkbox Counter Visible.
3. Choose OK.

 Resume the simulation by pressing the Play button. Now you will see that

the traffic light turns red when the queue contains three cars. Close the
System Animation windows and wait until the simulation is finished (the
simulation will run faster if all windows are closed).

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$ / �

Simulation results The systems measure_throughput_time and count_cars_driven_on collect all
kinds of simulation information. For this case the number of cars that have
driven on and the throughput time are interesting. For every car the waiting
time and the service time is measured. The sum of these two numbers is the
throughput time. To view the simulation results we add some dashboard
objects to the dashboard. With the dashboard the simulation can be
monitored.

1. In the Simulation menu select Show Dashboard (or press the dashboard

button).
2. Push the Table button.
3. Move the mouse pointer over the Dashboard window. The cursor will

change into the symbol for a table dashboard object.
4. Click the left mouse button at the place you want to put the table object.
5. Double click the new table object. A Dashboard Objects Properties

window appears.
6. In the Place box select the channel main.

measure_throughput_time.tmeasurement.cumm_results.
7. Choose OK.
8. Resize the table if necessary.

 Figure 6 shows an example of a table containing simulation results. The

table contains a row for every subrun. The column arrivals shows the
number of tokens that arrived in the measure, which is the number of cars
that have refuelled. The column average contains the average throughput
time of all tokens in the subrun. This is the average time it took to refuel the
cars in the subrun. The column variance indicates the reliability of the
average throughput time. For the interpretation of the variance we refer to
[Ros90].

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$ ��

 Figure 6 - Simulation results

 When the differences between the results in the subruns are high it means

that the results are unreliable. Because in this case for all subruns the
average is near 7 minutes we can conclude that the throughput time is
indeed about 7 minutes. With this information it is however impossible to
give an answer to the question whether waiting of ten minutes or more
occur.

 We need the results of the measure count_cars_driven_on when we want to

know how many cars had to drive on in comparison to the number of cars
that could be serviced.

 To view these results:

1. Double click the table object. A Dashboard Objects Properties window
appears.

2. In the Place box select the channel
main.tel_doorrijders.tmeasurement.cumm_results.

3. Choose OK.
4. Size the table if necessary.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

% �

 Figure 7 shows an example of the results. Because the cars are not

serviced the throughput time and the variance are 0. When the column
arrivals is compared to this column in Figure 6 we can see that indeed
about 8% of the cars have to drive on. This means that the question whether
drivers evade the rules can be answered negative.

 Figure 7 - Simulation results

Other scenarios As explained in the case description the management want to know what the

best investment is to reduce the number of cars that drive on. If possible
they also want to reduce the average throughput time. For each investment
scenario you can change the model and run a simulation. When you have
done that and carefully analysed the results you can advise the management
of the service station.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

��

3. The language

Introduction Learning to specify in a functional language is like learning a skill: you have

to know about the materials you are working with, about the tools to work
with, and about how to operate the tool on the materials in order to create a
result.

Materials In a functional specification, the materials we use are types and values. The

tools we use are type and value constructions and expressions. The result
we want to obtain is a token value. In ExSpect this will be a specification of
(part of) the body of a processor, in this case a specification of how to build
an output token value from the input token values.

 In the tutorials in the previous chapters we already saw that the body of a

processor specifies the exact way to produce output token values from input
token values. We will give a short rehearsal here.

 In the simplest form, a processor copies the value from an input channel to

an output channel, without change. This is expressed in the processor's
body with an assign statement:

 output <- input

 This means that the value of the token produced for the channel 'output' is

the same as the value of the token on channel 'input'.

 We also saw that we could specify a delay by which the output token should

be available. This is expressed by:

 output <- input delay 2.0

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

$ �

 which means that the token for channel 'output' becomes available only 2.0
time units after the moment of firing of the processor.

 We saw furthermore that a processor could select output channels under

certain restrictions. This is expressed by an 'if statement':

 if input > 0 then output <- input fi

 This means that a new token value for channel 'output' will only be

produced if the token value of channel 'input' is positive.

 The statement:

 if input � 0 then

 output1 <- input

 else

 output2 <- input

 fi

 expresses that negative values and ø are copied to output1 and positive

values are copied to output2.

 It is even possible to impose restrictions on the input token before taking it

into an input channel. By means of preconditions it is possible to select
tokens from an input channel:

 pre: input > 0

 A processor with these preconditions only accepts tokens on channel input,

which are positive. All other tokens on that channel will not trigger the
processor.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

�

 The value of the output token can be derived from the value of input tokens
by means of a function:

 output <- function (input)

 where function [a: . . .]: = . . .

 In this tutorial we will learn how to specify the body of a function, that is,

how we can derive a new value from other values.

 First of all we will learn how to use types in order to classify values. This

consists of an introduction of basic types and type constructors.

 Together with types, we will introduce constant values of these types.

Together with type constructors we will show how to construct new values
with value constructors.

 Types and values will be the materials we are going to use. Type

constructors and value constructors will be the first tools we will handle.

 Next, we will see how to define and use functions, another set of tools.

 The ExSpect language and tool can be used in two ways. One way is to

combine predefined building blocks (processors and subsystems) to specify
a large system. However, not all systems can be built in this way. It may be
necessary to adapt building blocks or even to create them from scratch.

 For this use of ExSpect - as a high-level programming language - this

tutorial is destined. The part that deals with these aspects is called the
functional part of ExSpect. It resembles typed functional programming
languages, hence this qualification. The most striking difference of the
ExSpect language compared to ordinary (third-generation) programming

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& �

languages are the absence of the sequencing (semicolon: ';') operator. In the
C language, for example, introducing an auxiliary variable help and
executing the following statements performs interchanging the values of
variable x and y usually.

 help = x; x = y; y = help

 In ExSpect, this is done by the following simultaneous assignment:

 x <- y, y <- x

 It is assumed that x, y are stores here. In a simultaneous assignment, the

variables (stores) retain their value until the complete assignment has been
executed. The order in which they are given is of no effect.

 Another difference is that ExSpect allows assignments of very complex

datatypes in one stroke; for instance the assignment:

 s <- [x: stretch(0, 100)| x*x]

 fills the store or channel s with a table giving the squares for the numbers 0

up to 100:

 {<<0, 0>>, <<1, 1>>, <<2, 4>>, ..., <<100, 1000>>}

Stores, channels and The functional part of ExSpect is about defining stores,
processors channels and processors. Stores and channels are defined by attaching types

to them. A type represents a set of values. Processors are defined by
attaching value expressions or terms to them. A term represents a value,
which may depend upon some parameters. We give an example: the system
FINANCE depicted in the figure below.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' �

debet

subtract

credit

add total

Figure 1: Finance system

 The channels credit, debit and the store total are all typed with the basic type

num (numeral). Non-basic types are constructed from simpler types by
means of type constructors, for example num><num (numeral pair) or
[name:str, salary:num] (a record or tuple).

 A type definition consists of an identifier (the defined type) and a type (its

definition). The identifier can then be used in types instead of its definition.
Type expressions are types with variables. They are used in signatures to
describe the behaviour of functions.

 The processors in figure 1 are both installations of the processor book with

the following definition:

 Connections:

 amount: in: num

 total: store: num

 Pre:

 amount > 0

 Val / fun parameters:

 kind: val: str

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* �

 Definition:

 if kind='credit' then

 total <- total-amount

 else

 total <- total+amount

 fi

 The installations are given in the following table:

name amount total kind
add credit total 'credit'

subtract debit total 'debit'

 In the example, the values 'debit', 'credit', the conditions amount>0, kind='credit'

and the assigned values total-amount, total+amount all are terms.

 Terms can be either atomic (constants), a variable or constructed by means

of functions or quantors from simpler terms. In the example, 'debit', credit',

0, are atomic terms, kind, amount and total are variables, whereas >, =, -, + are
function symbols representing functions. We will discuss quantors later.
We shall first deal with types and values and then turn to terms and
functions. We then explain in more detail how processors and systems are
defined and installed. We conclude by explaining how to create and use
modules.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. �

3.1 Lesson 1: Types and values

Introduction Types represent sets of values. Basic types are bool, str, num and real. They

contain atomic values called constants. Non-basic or constructed types
contain basic types, one or more type constructors plus brackets ((,)) to
define the order in which the type constructors are applied. Their values are
represented by constructions containing constants and special function
symbols called construction symbols. We first treat basic types and their
values, then type constructors and constructed values. We conclude by
treating type definitions.

Basic types and The basic types are bool, str, num, real and void.
constants

bool The type bool contains two values: the boolean constants false and true.

Str The type str contains all printable ASCII strings. These strings are

represented between quotes. So '#%AC/DC' is a constant of type str. To
represent a quote in a string constant, it must be doubled. So '''a''' represents
the string 'a'. The empty string is '', which is also a valid constant. ASCII
strings containing non-printable characters, for example new lines are not in
this type.

Num The type num contains the rational numbers, i.e. natural numbers (0, 1, 2),

negative integers (-1, -2), and their quotients, like 5/17 or -191/27. The
rational numbers have no upper or lower bound; ExSpect can handle 1000-
digit numbers and their quotients. Of course, manipulations with large
numbers will be rather time consuming.

Real The type real is a numeric type like num. To distinguish them from nums,

reals must have a single decimal dot somewhere. Note that for example 2
and 2. are different constants, although they might mean the same to a user.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ �

So -2. and 3.14159 are reals, whereas -2 and 314159/100000 are nums.
Manipulation with reals is faster than with nums, but at a price: reals are
approximated. So 2.5+2.5=5. need not necessarily hold, the result might be
for example 4.9999999999761. The approximation made depends on the
hardware platform used. There is also a maximum real; exceeding this
maximum gives rise to errors similar to division by zero.

Void There is a fifth basic type void, which has no constants. It is used in type

constructions to denote some "degenerate" values.

Constructed types To construct new types, we use our type constructors $, *, ><, -

and their values > and the record operator. Basic types and type constructors represent sets
of constructed (non-atomic) values. In the sequence, we assume that A, B,

A', ... are types.

Sets The type $A contains finite sets of values from A. Enclosing their elements

in braces represents these sets. So $num contains for example the values {}
(the empty set), {1}, {-2, 5/3}, {3599/333} and so on. The value constructor is
here {_, ..., _}. Note that the empty set {} belongs to all set types. This fact is
reflected by giving it the degenerate type $void. It is not allowed to put
values from different types within the same set, so for example {1, -2.0} is an
illegal value.

 Note that bool and {false, true} have the same elements, but are nevertheless

different: one is a type, the other a value.

Lists The type *A contains finite lists (sequences) of values from A. The value

constructors for lists is <|-, ..., -|>. These lists are represented by enclosing
its elements between <| and |>. So for example <|4, 0, 0, 1, 4, 5|> is a list
containing six integers; it is of type *num. There is an empty list, denoted
<||>, having the degenerate type *void. Unlike sets, the order is maintained

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

��

and no duplicates are removed. So <|1, 2, 3|>, <|2, 3, 1, |> and <|2, 2, 3, 1|>
are all different.

Tuple types The type A><B contains value pairs, the first from A the second from B.

They are represented as <<a, b>>. Here <<_, _>> is the value constructor. So
for example <<5, 3.14>> is a value from num><real and <<'', {'', 'a'}>> is from
str><$str. The $ and * operators have priority over >< and ->, so a "set of

pairs" type needs brackets, for example $(num><str).

Mapping types The type A->B contains mappings: finite sets of value pairs. The values of

this type can be constructed by combining the above two constructions.
A restriction is imposed, though: the first components (from A) have to be
different. So {<<1, 1>>, <<2, 1>>} is a value of num->num, but {<<1, 1>>, <<1,

2>>} is not. Note that the second value does have type $(num><num). The
first value also has type $(num><num), since any value of num->num is also a
value of $(num><num). We say that num->num is stronger than
$(num><num).

 The mapping operator can be used to model arrays: num->A can be used to

represent an A array, with elements {<<1, a1>>, <<2, a2>>..., }. This is an
alternative for the list *A operator. When sequential access only is needed,

the list approach is preferred, but for random access the type num->A is more
profitable. For combinations of the >< and -> operator, it is advised always
to use brackets to indicate the order.

Record types Record types are constructed by means of attribute identifiers. If l1, l2, ...are

identifiers, then [l1:A, l2:A', ...] is a record type. Its values are for example
[l1:a, l2:a', ...]. The type constructor and value constructor thus look the same

in this case. This is like the record construction in programming languages.
The order of the attributes is not important, for example [a:num, b:str] and
[b:str, a:num] denote the same (record) type and the values [a:4, b:'a'] and [b:'a',

a:4] denote the same record value within this type.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& % �

Type definitions Type constructions can be given a name: a type definition. Names must
obey the syntax for identifiers: they must begin with an alphabetic character
and may not contain spaces. After its definition, a newly defined type can
be used in type constructions, thus maybe creating more complex defined
types. So the order in which type definitions are given is important. We
show an example, where a client file is defined. The defined types are
address and client (in that order), with the following constructions.

 type name type from

 address [street: str, city: str, zip: str]
 client [nr: num, name: str, addr: address]

 The type $client can be used to model for example a store containing client

data.

Exercises 1. Which of the following examples represent correct values. What is their

type?

 2.56.7 'abcd'' {7/5, '4'}
 {false, true} {'!@', 4} {{}}
 <<1, {7}>> [a:1, b:{}] <<<<4, ''>>, '1'>>

 2. Try to define ExSpect types for the following kinds of data. Give type

definitions by choosing an appropriate name for them.

 - a single-line error message;
 - the measured volume, pressure and temperature of a gas;
 - a multi-line ASCII document;
 - the results of the games played in a soccer league.

 3. Give the values in the types $bool and boo|><bool. Give the number of

values in the types $(boo|><bool) and bool->bool.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& ��

3.2 Lesson 2: Functions and terms

Functions Terms are atoms (constants), variables or constructions out of these by

means of functions and quantors. We first concentrate on functions.
Functions transform input values into a result value. Function applications
are terms involving the function symbol and simpler argument terms. For
instance the term sin(3.14) signifies the application of the function sin (sinus)
onto the term 3.14; the evaluation of this term results in a term of type real
close to 0.0. The term 1+2 signifies the application of add (addition) onto 1
and 2; the evaluation result is 3. The term a+2 signifies the application of
add (addition) onto a and 2; the evaluation result depends upon the value
that is substituted for a.

Signature Which input values of a function are accepted and which result value is

given, is determined by the function's signature. The signature of sin is real
for input and real for result, of add it is num, num for input and num for result
We represent these signatures by real→real and num, num→num respectively.

Standard functions ExSpect has a large number of standard functions. From them, new

functions can be defined. We first describe some standard functions and
their applications. Then we discuss quantors. Finally we describe how new
functions can be defined.

Simple functions A simple function has a single signature containing only types (without type

variables). In the following table, we give a selection of simple functions
with their signatures.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& $ �

 name signature example

 not bool→bool not(true) = false
 and bool, bool→bool false and true = false
 or bool, bool→bool false or true = true
 cat str, str→str 'Oh' cat ' boy' = 'Oh boy'
 head str→str head('Gee') = 'G'
 tail str→str tail('Gee') = 'ee'

 The fourth line in this table defines the simple function cat, with two string

parameters and a string result. From the example can be deduced that the
function can be used in infix mode, i.e. the function name or symbol
between the parameter terms. Its effect is to concatenate its two parameter
strings. In chapter 5 is the exact nature of these functions is explained.

 Every function with two parameters can be used in infix mode. However, in

nested function applications, like (a and b) or c one is advised to use brackets
for priority.

Overloading The same function symbol and name is sometimes used for several simple

functions. An example is formed by the arithmetical functions. The
arithmetical manipulation of reals and nums is different. Yet, when
specifying an addition, one wants to use the symbol +, irrespective of the
kind of numbers added. This is done by overloading: attaching more
signatures to the same function name, as shown in the table below.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& # �

 name signature examples

 add num, num→num 4/5 + 2/3 = 22/15
 real, real→real 0.8 + 0.67 ≈ 1.47
 num, $num→$num 4/5 + {0, 2/3} = {4/5, 22/15}
 sub num, num→num 4/5 - 2/3 = 2/15
 real, real→real 0.8 - 0.67 ≈ 0.13
 mult num, num→num 4/5 * 2/3 = 8/15
 real, real→real 0.8 * 0.67 ≈ 0.536

 rdiv num, num→num (4/5)/(2/3) = 6/5
 real, real→real 0.8 / 0.67 ≈ 1.194
 gt num, num→bool 5 > 7 = false
 gt real, real→bool 5.> 7. = false

 Note that the name of the above functions differ from the symbol used.

Also note the third definition of addition that manipulates sets of numerals.
A more extensive list of numeric functions can be found in the appendix.

 The priority in nested arithmetical terms like a+b*c is the normal

arithmetical priority. Note the extra brackets that are needed in the term
(4/5)/(2/3). We encountered the division symbol earlier in the values
belonging to type num.

Polymorphy Polymorphy can be seen as infinite overloading. For instance set union does

not regard the type of the contained elements. However, the union of sets of
different type is illegal: the result cannot be typed. The signatures of the
union thus contain $num, $num→$num, $str, $str→$str, but not $num, $str→??.
Hence, $T, $T→$T is a signature for all types T. This is the meaning of the
signature $T, $T→$T, where T is a type variable. Functions with signatures
containing type variables are called polymorphic.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& & �

 In the following table, we give some standard polymorphic functions. The
type variables used are T and S. Even polymorphic functions can be
overloaded, as in the last example.

 name signature examples

 eq T, T→bool 'a' = 'a' = true
 {1} = {} = false
 cond bool, T, T→T if true then 6 else 7 fi = 6
 elt T, $T→bool 2 elt {1, 3, 5} = false
 pick $T→T pick({0}) = 0
 union $T, $T→$T {1, 2} union {3} = {1, 2, 3}
 pi1 T><S→T pi1(<<3, 'a'>>) = 3
 pi2 T><S→S pi2(<<3, 'a'>>) = 'a'
 dom T->S→$T dom({<<1, 5>>, <<2, 7>>}) = {1, 2}
 rng T->S→$S rng({<<1, 5>>, <<2, 7>>}) = (5, 7}
 apply T->S, T→S {<<1, 5>>, <<2, 7>}.2 = 7
 T->S, $T→$S {<<1, 5>>, <<2, 7>>}.{1, 2} = {5, 7}
 ins T, *T→*T 4 ins <|4, 2|> = <|4, 4, 2|>

 ins T, $T→$ 4 ins {2, 4} = {2, 4}
 4 ins {3, 2} = {2, 3, 4}
 head *T→T head(<|4, 4, 2|>) = 4

 str→str head('Gee') = 'G'
 name signature examples
 tail *T→*T tail(<|4, 4, 2|>) = <|4, 2|>

 str→str tail('Gee') = 'ee'
 cat *T, *T→*T <|4, 4|> cat <|2|> = <|4, 4, 2|>

 str, str→str 'Oh' cat ' boy' = 'Oh boy'

Type constructors Irregular functions are functions that have no finitely representable

signature. The set, list and record constructors are irregular functions. They
can be used with terms as in the following examples.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& ' �

 {1+1, 3-1, 5} = {2, 2, 5}
 <|1+1, 3-1, 5|> = <|2, 2, 5|>
 [name:'J.'cat ' Doe', sal:10*10*30] = [name:'J. Doe', sal: 3000]

 The pair constructor (prod) is not irregular. It has signature T, S→T><S.

Like the set and record constructors, it can be used with terms as in the
following example. It has been included here because of its similarity with
the previous two functions.

 <<1.1*1.1, 2+{5, 7}>> ≈ <<1.21, {7, 9}>>.

 Also the record projection (symbol @) and update (upd) functions are

irregular. The following examples illustrate their use.

 [a:5, b:'q']@a = 5,
 [a:5, b:'q'] upd [b:'r', c:true] = [a:5, b:'r', c:true]

 These functions are called irregular, because their signature cannot be

represented finitely, although the allowed parameter types and the way they
affect the result type are completely determined. The set constructor
accepts one or more parameters of type T and yields a result of type $T. The
record constructors [l1:_, l2:_, ...] accept terms of types T1, T2... and yield a
term of type [l1:T1, l2:T2...]. The list constructor accepts one or more
parameters of type T and yield a result of type *T.

 The projection functions _@l accept a parameter of any type of the form

[...:T...] and yield a result of type $T. The record update function accepts two
parameters of type [l1:T1] and [m1:S1] respectively, such that common labels
are matched to the same types, i.e. if l1 = m1 then T1 = S1. The result type is

the record type that joins the parameter types.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& * �

Erroneous function In writing function application terms, three kinds of errors may
applications occur. The first ones are syntax errors due to ill-matched brackets,

misspellings and the like. The second are errors against the signature, for
instance in the term {1, 2} union {5.0} or 5.0 = 5. Both kinds of errors are
discovered during translation and reported by a "syntax error" or "type
unknown" error message. The third are runtime errors, which are detected
during execution only. Examples are given in the table below.

 runtime error explanation

 1/0 division by zero
 head('') head/tail of empty string
 pick({}) pick on empty set
 {<<1, 2>>, <<3, 4>>}.2 invalid apply argument
 [name:'Jan']@address invalid apply argument

 In these cases the "non-value" abort is the evaluation result. Of course

nobody will write the above erroneous terms, but they may occur while
evaluating a term involving variables. In applications of the cond function,
the branch that is not chosen is not evaluated which could have aborted
otherwise. So if a=0 then 0 else b/a fi and if a elt dom(M) then M.a else 0 fi are
not aborting terms.

Exercises 1. Discuss the correctness of the following function application terms.

Evaluate the correct ones.

 if not 2=1 then 6-1 else 0

 <|0, 4, 1|>} >-1

 tail('a') elt {tail('b')}

 if 6=7 then 6/0 else 5.1 fi

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& . �

 {0, 4+1, 5}

 [a:head('a')]@b

 [a:'', b:1/(1-1)] upd [c:1/2]

 5.41+0.99=6.4

 pi1(<<8-4, 1/0>>)

 2. Do the following boolean terms always evaluate to true ? If not, give a

counterexample. The variables a, b have type num, s has type str and A has
type $num.

 (head(s) cat tail(s)) = s

 not(a elt A) or ({a} union A) = A

 not(a elt {b})

 a/2+a/2=a and a*1/a=1

Implicit mapping We have constructed mappings by explicit enumeration. Mappings
construction and can also be implicitly constructed. The syntax is [x:A|Ex]. Here, x

quantors must be an identifier, A a term of set type, i.e. containing sets or mappings,
and Ex a term that may contain x as parameter. If A is of type $B, the

parameter x is understood to have type B. Also mappings have a set type,
since they contain sets of pairs. B may even contain type variables when it
occurs in a term with variables. The result type is B->C, where C is the type
of Ex. The explicit value is obtained by constructing the set of pairs <<a,

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& / �

b>>, where a subsequently takes all values from A and b is obtained by
replacing x by a. Some examples of this construction are given below.

 mapping type explicit value

 [y:{'a', 'b', 'd'}|tail(y)] str->str {<<'a', ''>>, <<'b', ''>>,
 <<'d', ''>>}
 [x:{1, 3}|[a:x-1]] num->[a:num] {<<1, [a:0]>>, <<3, [a:2]>>}
 [z:{{}, {0}}|0 elt z] $num->bool {<<{}, false>>, <<{0}, true>>}

 The implicit mapping construction can be combined with the rng function to

construct sets in an implicit way. The term rng[x:A|Ex] is equivalent to the

mathematical notation for sets. The above examples combined with rng give
the following results.

 term type value

 rng[y:{'a', 'b', 'd'}|tail(y)] $str {''}
 rng[x:{1, 2, 3}|[a:x-1]] $[a:num] {[a:0], [a:1], [a:2]}
 rng[z:, 0 |0 elt z] $num->bool {false, true}

 There are other functions (quantors) that combine well with implicit

mappings. We give a table.

 name signature example

 all T->bool→bool all[x:{1, 2, 3}|x>0] = true
 any T->bool→bool any[x:{1, 2, 3}|x>3] = false
 {} T->bool→$T set[x:{1, 2, 3}|x>1] = {2, 3}
 sum T->num→num sum[x:{1, 2, 3}|x+1] = 9
 union T->$S→$S union[x:{1, 2, 3}|{x, x+1}] = {1, 2, 3, 4}

 Note that union is an overloaded polymorphic function. The term set [x:A|Ex]

can also be written $[x:A|Ex] because of the association of "set" with the $

symbol.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

& ��

 We tabulate some terms with their mathematical counterpart. Here x is a
variable, Ex a term containing x, Px a predicate containing x, Nx a numerical
term containing x, Sx a set term containing x and A a (finite) set. We added

the max and min quantors that have the same signature as sum.

 ExSpect math
 [x:A|Ex] {(x, Ex)|x ∈ A}
 rng[x:A|Px] {Px|x ∈ A}
 all[x:A|Px] ∀x ∈ A: Px
 any[x:A|Px] ∃x ∈ A: Px
 set[x:A|Px] {x|x ∈ A ∧ Px}
 sum[x:A|Nx] Σx∈ANx
 max[x:A|Nx] MAXx∈ANx
 min[x:A|Nx] MINx∈ANx
 union[x:A|Sx] Ux∈ASx
 rng[x:set[x:A|Px]|Ex] {Ex| x ∈A ∧ Px}

 Note the last element where two quantors are combined.

Function definitions Like type definitions, function definitions are made by attaching a name to a

term. A function definition must be accompanied by its signature, so its
parameter variables and their types and its result type must accompany the
body term. A term without parameters can be defined too, giving a value
definition. In the following examples simple functions are defined.

 name: pi
 parameters:
 result type: real
 body: 3.14159

 name: triangle
 parameters: x:num
 result type: num
 body: x*(x-1)/2

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' % �

 name: headstogether
 parameters: x:str, y:str

 result type: str
 body: head(x) cat head(y)

 name: mult
 parameters: x:$num, y:num
 result type: $num
 body: rng[t:x|t*y]

 The last function in fact is an extra overloading of the mult function that we

saw earlier. The choice of the name mult means that we can use the infix
symbol *; for instance in the term {5, 4, 3} * 7 meaning mult({5, 4, 3}, 7) and

yielding {35, 28, 21}.

Polymorphic functions Polymorphic functions are defined by using type variables, like in the

following examples: the set intersection and delete functions, followed by
mapping update.

 name: isect
 parameters: x:$T, y:$T
 result type: $T
 body: rng[t:x|t elt y]

 name: del
 parameters: x:T, y:$T
 result type: $T
 body: set[t:y|not(t=x)]

 name: upd

 parameters: x:T->S, y:T->S
 result type: T->S
 body: [t:dom(x) union dom(y)| if t elt dom(y) then y.t else x.t fi]

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' ��

 The body of the mapping update function could also have been:

 y union set[t:x| not(pi1(t) elt dom(y))].

 This example needs some study, since many functions are combined. An

example of the mapping update:

 {<<1, 2>>, <<3, 4>>} upd {<<3, 5>>} yields

 {<<1, 2>>, <<3, 5>>}.

 The update of a mapping at a single point as in the above example is used

frequently; an extra (overloaded) definition has been added as follows.

 name: upd
 parameters: x:T->S, y:T, z:S
 result type: T->S

 body: x upd{<<y, z>>}

Type casting The above definition is not accepted by the translator, since it cannot

perceive that the term{<<y, z>>} is a mapping. Instead, it is typed with
$(T><S) and a function upd with signature T->S→$(T><S) is not found. So,
an error message "type of upd unknown" is issued. This problem can be
solved by a type cast: the type is reinforced to T->S by applying the
"dummy" function tomap with the following definition.

 name: tomap
 parameters: x:$(T><S)
 result type: T->S
 body: x

 The refused body of upd is replaced by x upd tomap({<<y, z>>}) and this is

accepted.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' $ �

Recursive definitions Unlike type definitions, function definitions need not be defined before their
use. This allows for recursive definitions that refer to themselves. As an
example, we define the size of a set.

 name: size
 parameters: x: $T
 result type: num
 body: if x= {} then 0 else 1+size(rest(x)) fi

 Recursive definitions must be used with care, since they may lead to non-

termination. We give an example of a "dangerous" recursive definition.

 name: div
 parameters: x:num, y:num
 result type: num
 body: if x<y then x else 1+div(x-y, y) fi

 Evaluating the function 2 div -1 will not terminate. As an exercise, try to

improve upon this definition.

 In the majority of cases, recursion can be replaced by quantor definitions.

The body in size could have been sum[t:x|1]. Consider the function that
extracts the addresses from a set of client records.

 name: addresses
 parameters: x:$[name:str, addr:str]

 result type: $str

 body: if x= {} then

 {}

 else

 {pick(x)@addr}union addresses(rest(x))

 fi

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' # �

 Much more comprehensible, concise and efficient is the body

 rng[t:x|t@addr].

Exercises 1. Define a function avg that computes the average of two numbers and also

of a set of numbers. Make 4 overloaded definitions: for 2 nums, for $num,
for 2 reals and for $real.

 2. Define a function dommax of signature T->num→$T that selects from a

mapping the set of points where the maximum is reached. So for example
dommax[x:{1, 2, 3}|x*(x-4)] = {1, 3}.

 3. Define a function torel of signature T->$S→$(T><S) that converts a set-

valued mapping to the corresponding relation. If <<a, B>> elt f holds and b

elt B, then also <<a, b>> elt torel(f) must hold and vice versa. Hint: combine
the union and rng quantors.

Types and sets ExSpect types and sets can mean the same, but are used in different context.

The same holds for functions and mappings. A type construction means a
certain set of values, that may be infinite. A set is a term that has a type (a
set type, usually starting with a $ symbol) and is always finite. When a type
is needed, a set is not accepted and vice versa.

 A function has a signature and means a set of pairs that may be infinite. A

function is always implicitly given by its parameters and a defining term. A
mapping has a type (with a -> symbol in it) and is always finite. It may be
explicitly or implicitly given. In the last case, a parameter, a set (term) and
a defining term must be given.

Functions and The following expressions are incorrect terms for this reason. What is
mappings meant by the last non-term can be correctly formulated by the stretch

function, giving the integers in a certain range.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' & �

 expression term to use

 [x:bool|not(x)] [x:{false, true}|not(x)]

 all[x:num|not(x*x < 0)] true

 set[x:num|5<x<13] stretch(6, 12)

 The following expressions are incorrect types.

 expression type to use

 {false, true} bool
 {5, 6, 7} num (cannot be strengthened)
 set[x:num|5<x<13] num (cannot be strengthened)

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' ' �

3.3 Lesson 3: The dynamic part

Introduction The dynamic part of the language is about modelling processes and their

interaction. The theory behind the dynamic part of ExSpect is Petri net
theory. We will give a brief introduction into the aspects that are relevant
for modelling and specification.

Petri nets A Petri net is a network of active objects called processors and passive

objects called channels. The channels may contain any number of tokens.
Depending on the kind of channels involved, the tokens in it may be
interpreted as units of information, control or even physical objects. A
special channel called store contains a single token at all times.

Processors Processors can be connected to channels in three ways: for input, output and

both. This is represented graphically by arrowheads. If the tokens in the
input channels of a processor satisfy certain conditions, the processor may
become activated. It then consumes certain tokens from its input channels
and produces tokens for its output channels. The production of tokens may
be subject to a delay. Delayed tokens become available only when the
simulation clock has advanced the same amount of time. Under which
conditions a processor becomes activated and which tokens it may consume
and produce is defined by the specification of the processor. How a
processor is specified is defined in the next subsection.

Systems A certain set of processors and channels can be grouped together in a subnet

or system. Such a system can be used to build larger systems, by connecting
some special channels or pins within the subsystem to the channels of the
larger system. Connecting a processor or subnet into a larger net is called
installing. The final model is a system without pins. This way of
hierarchical modelling corresponds to the well-known and intuitively clear
DFD (data flow diagram) modelling technique. In standard Petri net theory,
processors are called transitions and channels are called places.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' * �

Processor definition We now can explain how processors are defined and installed. Like a
function, a processor has a name, parameters and a body. It also has a
precondition. The parameters are divided into input pin, output pin, store

pin, value, and function parameters. The parameters consist of a name and
a type (for function parameters a signature). The precondition contains a
predicate: a term of type bool. The body consists of a statement list. A
statement is a conditional statement, the skip statement or an assignment.
Commas separate the statements (,) instead of semicolons, indicating that
they can be executed concurrently: their order has no significance. A
conditional statement consists of an if-predicate, a then-part and an optional
else-part.

 The then- and else-parts are statement lists. An assignment consists of an

output channel or store name, the assignment symbol (<-) and a term of the
same type as the assigned channel or store. It may be followed by a delay
term (of type real) preceded by the keyword delay. The terms and predicates
may contain all variables amongst the parameters except the output channel
parameters.

Processor installation Processors are installed in systems. Upon installing, pins are linked to

channels and pins of the system; terms are attached to value parameters and
functions to function parameters. Their types must match of course. Terms
attached to a value parameter may only contain value parameter names of
the system as variables; these must be filled in when the system itself is
installed in a higher-order system. The topmost system has no value or
function parameters, nor pins. Value and function parameters are static:
their values/definitions are bound to the variables when they are installed.
In the topmost system they are bound to fixed values/functions. Pins are
dynamic: the values they contain may vary during the execution of the
topmost system.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' . �

Processor activation A processor is activated when the channels linked to its input pins contain a
token combination that satisfies the precondition. Upon activation, the
activating tokens are consumed. Their values are bound to the
corresponding parameter variables as are the store values. According to the
specified statements, tokens are produced for the channels linked to the
output pins, and the store values are updated. In a conditional statement, the
then-part is executed if the condition predicate evaluates to true; the else-
part is executed if it evaluates to false. A missing else-part means that the
statement is skipped in this last case. The skip statement performs no
actions. An assignment statement causes the creation of an output token
(for output pins) or an update of the store value (for store pins).

 The created token becomes available after d time units, where d is the

corresponding value of the delay term. If the delay term is absent, d = 0.
More assignments for the same output pin are allowed; in this case several
tokens are produced for the same channel. More assignments for the same
store pin are not allowed. Delayed assignments for store pins are not
allowed either. As an example, we use the finance system defined earlier.
The processor book has the following definition.

 Connections:

 input: amount: num

 store: total: num

 Pre:

 amount > 0

 Val / fun parameters:

 kind: val: str

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' / �

 Definition:

 if kind = 'credit' then

 total <- total - amount

 else

 total <- total + amount

fi

 When it is installed with name cr, value parameter kind bound to 'credit',

input pin amount bound to channel a containing 3 tokens with value 5, -3 and
7 respectively, store pin total bound to t containing the value 1000, the
following can happen.

 The tokens with values 5, 7 both satisfy the precondition, so any of them

may activate cr. Suppose 5 is selected. The body is evaluated; because of
the value of kind, the then-part is executed. So total is updated with 1000-5.
In the new situation, a contains tokens with values -3, 7, and total contains
995. If the token with value 7 has not disappeared in the meantime, it can
again activate cr and result in total containing 988. The token with value -3
does not satisfy the precondition; it will not be consumed by cr. For more
activations of cr, other processors (or the end user) must insert positive-
valued tokens in a.

Preconditions and Precondition predicates determine whether a token combination is
if-statements selected; the if-predicate determines what to do with the tokens once they

are selected. So a processor without precondition (i.e. true as precondition)
and body if P then S fi differs from the processor with precondition P and
body S. The first is activated by any input token combination; if this
combination does not satisfy S, it is consumed without causing any output
or store update. The second does not consume token combinations that do
not satisfy S, so they may be left for another round or for other processors.
For token combinations that do satisfy S, both act the same.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

' ��

Polymorphy Like functions, processors can be polymorphic, i.e. their signature types
may contain type variables. When a polymorphic processor is installed, the
installed types must match the definition types. More explicitly, the same
type variable T must correspond to the same installed type. Consider the
following polymorphic processor copy.

 input: inpt: T

 output: outpt: T

 val: t: real

 body: outpt <- inpt delay t

 This processor cannot be installed by connecting the input pin to a channel
of type num and the output pin to a str channel. Nor can it be installed by
producing for example a num term for the value parameter t.

Systems When defining systems, parameters like in a processor definition can be

specified. Systems can be polymorphic, like processors. Pins can be drawn
in the graphical editor; value and function parameters must be added after
opening the 'signature' window. For systems, even processor and
(sub)system parameters are possible. This advanced feature is seldom used
and outside the scope of this tutorial. Furthermore, channels and stores are
defined and processors and subsystems installed.

 Defining channels and stores is done by drawing them and then giving a

name and type construction and (for channels optionally) an initialisation.
A store initialisation is a term of the store type. It may contain variables
from the value and function parameters. A channel initialisation may
contain one or more terms of the channel type. It may also be absent.
When installing subsystems, their parameters must be bound, like for
processors.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* % �

Exercises 1. Convert the system FINANCE to a system with 2 different processors,
one for addition and the other for subtraction.

 2. Define a polymorphic processor with an input and output pin of type T

and a store pin of type bool. Whenever the store has value true the input is
copied to the output with a delay of 1 time unit. When the store has value
false the input tokens are left untouched. This processor can be used to
model a transistor or a lazy bureaucrat.

 3. Define a subsystem with input pin of type $T and output pin of type T. If

the set A arrives as input, the output must consist of all the individual
elements of A.

Modules and scoping ExSpect has a number of libraries containing general-purpose types,

functions, processors and systems. It is possible to add one's own libraries.
A library is called a "module" in the language; modules can be imported by
"including" them. The order in which modules are included is important.

Exporting definitions When creating a module, definitions that are to be used outside the module

must be exported. Types can be exported with or without their defining
type construction. In the last case, all possible access functions of the type
must be defined in the module; i.e. the type is abstract. In this case, it is
possible to implement the type and its access functions differently without
the users of the type noticing it. In the other case this is impossible. Also
definitions that are accessible by users must be exported.

Local definitions Modules are one way of limiting the scope of definitions. Another way is

by local definitions that may accompany a single definition. The local
definitions are not known outside the definition that they accompany. Local
definitions may be used for creating more efficient definitions, when
recursion is involved.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* ��

 Consider the following definition of the Fibonacci function.

 name: fib

 parameters: x:num

 result type: num

 body: if x<2 then 1 else fib(x-1) + fib(x-2) fi

 Evaluating for example fib(5) means going through the following steps.

 fib(5)→
 fib(4)+fib(3)→
 fib(3)+fib(2)+fib(2)+fib(1)→
 fib(2)+fib(1)+fib(1)+fib(0)+fib(1)+fib(0)+1→
 fib(1)+fib(0)+1+1+1+1+1+1→
 1+1+6→
 8

 We see that in the above process, fib(3) is evaluated twice and fib(2) three

times. When evaluating fib for higher values, this gets worse and worse,
thus causing bad performance.

 It would be less inefficient to evaluate fib(5) as follows:

 fib(5)→
 1*fib(5)+0*fib(4)→
 1*fib(4)+1*fib(3)→
 2*fib(3)+1*fib(2)→
 3*fib(2)+2*fib(1)→
 5*fib(1)+3*fib(0)→

 8.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* $ �

 By creating a subordinate function with more parameters, this can be
achieved. The body of fib becomes fib2(x, 1, 0), where fib2 with num
parameters x, y, z is defined with the body:

 if x<2 then y+z else fib2(x-1, y+z, y) fi

 The function fib2 has no use except in the context of the fib function, so it is

natural to define it as local function of fib. Local functions can be nested,
but it is not advised to use this feature. It is not pleasant to hunt for
definitions that are too deeply nested. It is better to put definitions on the
top level, unless they are specifically linked to one definition.

Scope We conclude this lesson by treating the scope of variables. The smallest

and strongest scope is the variable in an implicit mapping term. In the term
[x:A|E], any variable x within term E is bound by the mapping, and thus is
interpreted as an element of the set A. An occurrence of x in A is not bound
by it, so it must occur in some wider scope. An example is [x: stretch(0, x)|

x+1] in a function body where x is a parameter. Here, the x in x+1 is the
mapping variable, whereas the one in stretch(0, x) is the function parameter.

 Parameters and local definitions in a definition form the second scope. The

variables there take priority over those in the third scope, the global and
imported definition names.

Exercises Define a function freqcount of signature str, str→num, such that freqcount(a, b)

gives the number of times that the string b occurs as substring of a. For
example, freqcount('abracradrabra', 'ra') = 4. Compute how many recursion
steps are needed if the length of a is n and of b is m. Improve the efficiency
of your definition (the most efficient definition requires n steps).

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* # �

4. Syntax

Release note In ExSpect version 6.x the following constructions are not supported

anymore by the designer and animator:

• Bundle types;
• Processor and system parameters.

 The type checker has however not been changed since version 5, so the type

checker still supports these constructions. That is why the keyword ctype
still needs to be listed as reserved word.

Reserved words as bounds channel ctype

 delay default end export

 form from fun in

 include inhibit init module

 out pre prio proc

 skip sys store type

 val void where with

 if then else fi

 elif

Notation The syntax is described in BNF (Beckes Nauer form). The following special

notations are used:

< X > A comma separated list of X's
^X Anything except an X

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* & �

 module ::= (line ‘;’)+

 line ::= [‘export’] dec ‘in’ id |

 [‘export‘] def [‘where’ line (‘;’ line)* ‘end’] |

 ‘include’ string

 dec ::= typedec | fundec | procdec | sysdec

 typedec ::= ‘type’ id [(‘:=’ | ‘from’) type]

 fundec ::= id [[par]] : type

 procdec ::= ‘proc’ id ‘[‘ < afpar > ‘]’

 sysdec ::= ‘sys’ id ‘[‘ < afpar > ‘]’

 par ::= < id ‘:’ type >

 actpar ::= (‘in’ | ‘out’ | ‘store’ | ‘val’) par

 funpar ::= ‘fun’ < fundec [‘default’ id] >

 afpar ::= actpar | funpar

 def ::= typedef | fundef | procdef | sysdef

 typedef ::= [‘export’] ‘type’ id (‘:=‘ | ‘from’) type

 fundef ::= id [‘[‘ par ‘]’] ‘:=‘ expr ‘:’ type

 procdef ::= ‘proc’ id ‘[‘ < afpar > [‘|’ preprio] ‘]’ ‘:=‘ < stat >

 sysdef ::= ‘sys’ id [‘[‘ < afpar > ‘]’] ‘:=‘ < obj >

 preprio ::= ‘pre’ expr |

 ‘prio’ expr |

 ‘pre’ expr ‘‘‘ ‘prio’ expr |

 ‘prio’ expr ‘‘‘ ‘pre’ expr

 stat ::= id ‘<-’ expr [‘delay’ expr] [‘bounds’ real [real]] |

 ‘if’ expr ‘then’

 < stat >

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* ' �

 (‘elif’ expr ‘then’ < stat >)*

 [‘else’ < stat >]

 ‘fi’ |

 ‘skip’

 obj ::= (‘channel’ | ‘store’) id ‘:’ type [‘in’ id]

 [‘form’ string] (‘init’ expr)* |

 id [‘:’ id] ‘(‘ < avarg > ‘)’

 actarg ::= (‘in’ | ‘out’ | ‘store’ | ‘inhibit’ | ‘fun’) < id >

 valarg ::= ‘val’ < expr >

 avarg ::= actarg | valarg

 expr ::= id |

 const |

 ‘(‘ expr ‘)’ |

 [id] ‘[‘ id ‘:’ expr ‘|’ expr ‘]’ |

 ‘[‘ < id ‘:’ expr > ‘]’ |

 expr ‘@’ id |

 id ‘(‘ arg ‘)’ |

 ‘if’ expr ‘then’ expr (‘elif’ expr ‘then’ expr)* ‘else’ expr ‘fi’ |

 ‘<<‘ < expr > ‘>>‘ |

 ‘{‘ < expr > ‘}’ |

 ‘<|’ < expr > ‘|>‘ |

 expr (id | ‘=‘ | ‘-’ | ‘/’ | ‘!=‘ | ‘->‘ | ‘+’ | ‘*’

 | ‘>‘ | ‘<‘ | ‘>=‘ | ‘<=‘ | ‘\’ | ‘.’) expr |

 (‘-’ | ‘$’ | ‘#’) expr

 type ::= stype | type ‘->‘ stype | type ‘><‘ stype

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* * �

 stype ::= id | ‘(‘ type ‘)’ |

 (‘$’ | ‘*’) stype |

 ‘[‘ < id ‘:’ type > ‘]’

 const ::= num |

 real |

 string |

 ‘{}’ |

 ‘<||>‘

 num ::= (‘0’ - ‘9’)+

 real ::= (‘0’ - ‘9’)+ ‘.’ (‘0’ - ‘9’)* [‘e’ [‘+’ | ‘-’] (‘0’ - ‘9’)+]

 string ::= ‘'‘ (‘''‘ | ^’ '‘)* ‘'‘

 id ::= (‘a’ - ‘z’ | ‘A’ - ‘Z’) (‘a’ - ‘z’ | ‘A’ - ‘Z’ | ‘0’ - ‘9’ | ‘_‘)*

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* . �

5. Function list

Here all functions defined in the modules basic utils, stat and adt are listed alphabetically. For every
function the module is given in which the function is defined, and a short hint as to what the result
will be of an invocation of that particular function.

abort: void; (basic) value to denote abortion
abs[x:num]: num; (utils) | x | (absolute value)
add[x:num, y:num]: num; (basic) x + y
add[x:$num, y:num]: $num; (utils) { z + y | z ∈ x }
add[x:real, y:real]: real; (basic) x + y
add[x:$real, y:real]: $real; (utils) { z + y | z ∈ x }
add[n:num, x:real]: real; (utils) real(n) + x
add[x:real, n:num]: real; (utils) x + n
add[x:*num, y:num]: *num; (utils) x with each member incremented by y
add[x:*real, y:real]: *real; (utils) x with each member incremented by y
adel [x:num->T, y:num]: num->T; (adt) array x without the y'th member
aempty [x:num->T]: bool; (adt) is x an empty array?
aelement [x:num->T, y:num]: T; (adt) x(y), value of the y'th member of array x
aindex [x:num->T, y:T]: $num; (adt) {i:dom(x) | x(i)=y}
ains [x:num->T, y:num, z:T]: num->T; (adt) array x with (y,z) inserted
ains [x:num->T, y:num, z:num->T]: num->T; (adt) array x with array z inserted at position y
all[x:T->bool]: bool; (utils) forall {y ∈ dom(x)} x(y)
and[x:bool, y:bool]: bool; (utils) x and y (logical and)
anull: num->void; (adt) the empty array
any[x:T->bool]: bool; (utils) exists {y ∈ dom(x)} x(y)
apply[x:T->S, y:T]: S; (basic) x(y) (mapping application)
apply[x:T->S, y:$T]: $S; (utils) { x(z) | z ∈ y }
asplit [x:num->T, y:num]: (num->T)><(num->T); (adt) split array x at index y
aswap [x:num->T, y:num, z:num]: num->T; (adt) array x with values at y and z interchanged
atobag [x:num->T]: T->num; (adt) array x converted to a bag

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* / �

badd [x:T->num, y:$T]: T->num; (adt) bag x with all elements of y added
badd [x:$$T]: T->num; (adt) bag of all elements occurring in the sets in x
bdel [x:T->num, y:T]: T->num; (adt) bag x with one element y deleted
bdiff [x:T->num, y:T->num]: T->num; (adt) bag x minus all elements of bag y
bempty [x:T->num]: bool; (adt) is x an empty bag?
bernouilli[p:real, seed:real]: real; (stat) a random number (bernouilli)
binomial[n:real, p:real, seed:real]: real; (stat) a random number (binomial)
bins [x:T->num, y:T]: T->num; (adt) bag x with element y inserted
bisect [x:T->num, y:T->num]: T->num; (adt) biggest bag both contained in x and y (bag

intersection)
bjoin [x:T->num, y:T->num]: T->num; (adt) bag of all elements of x and y (join)
bjoin [x:$(T->num)]: T->num; (adt) bag of all elements of all bags in x (join)
bmax [x:num->num]: num; (adt) maximum (greatest element) of bag x
bmin [x:num->num]: num; (adt) minimum (smallest element) of bag x
bnull: void->num; (adt) the empty bag
bocc [x:T->num, y:T]: num; (adt) number of times y occurs in bag x
botint[x:num]: num; (utils) floor of x , largest integer <= x
botint[x:real]: num; (basic) floor of x , largest integer <= x
bpick [x:T->num]: T; (adt) an arbitrary (though deterministic) element

from bag x
bproj [x:T->num, y:$T]: T->num; (adt) projection of bag x onto y
brest [x:T->num]: T->num; (adt) bag x without the element bpick(x)
bsize [x:T->num]: num; (adt) number of elements in bag x
bsum [x:num->num]: num; (adt) sum of all elements of bag x
btoset [x:T->num]: $T; (adt) bag x converted to a set
bunion [x:T->num, y:T->num]: T->num; (adt) smallest bag containing x and y (bag union)
bunion [x:$(T->num)]: T->num; (adt) smallest bag containing all bags of x (bag

union)
cat[x:str, y:str]: str; (basic) x concatenated with y
cat[x:*T, y:*T]: *T; (basic) the concatenation of x and y
chisq[n:real, seed:real]: real; (stat) a random number (X-squared)
chop[x:str, n:num]: str; (utils) string x reduced to its first n characters

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

* ��

cond[x:bool, y:T, z:T]: T; (basic) if x then y else z (condition)
cos[x:real]: real; (basic) (x)
del[x:T, y:$T]: $T; (basic) y \ { x }, x is deleted from the set y
denominator[x:num]: num; (basic) the denominator of a rational number
div[x:num, y:num]: num; (basic) x div y (truncated)
dom[x:T->S]: $T; (utils) domain of x
elt[x:T, y:$T]: bool; (basic) x y
elt[x:T, y:*T]: bool; (utils) x occurs in y
eq[x:T, y:T]: bool; (basic) x = y
erlang[m:real, k:real, seed:real]: real; (stat) a random number (erlang)
even[n:num]: bool; (utils) is n even?
exp[x:real]: real; (basic) e^x
false: bool; (basic) falsehood
fcomp[x:T->S, y:S->R]: T->R; (utils) x o y, 'function' composition
frc[x:num]: num; (utils) fractional part of x
frc[x:real]: real; (utils) fractional part of x
frest[x:S->T]: S->T; (utils) x \ {pick(x)}, x without the element pick(x)
front[x:*T]: *T; (utils) x with the last member removed
gamma[l:real, k: real, seed:real] (stat) draw from a gamma distribution with mean l/k

and variance l/k^2.
gcd[x:num, y:num]: num; (basic) x y, greatest common divisor
ge[x:num, y:num]: bool; (utils) x >= y
ge[x:real, y:real]: bool; (utils) x >= y
gt[x:num, y:num]: bool; (utils) x > y
gt[x:real, y:real]: bool; (utils) x > y
head[x:str]: str; (basic) first char in string x
head[x:*T]: T; (basic) the first member of x
iff[x:bool, y:bool]: bool; (utils) x == y (logical equivalence)
impl[x:bool, y:bool]: bool; (utils) x -> y (logical implication)
ins[x:T, y:$T]: $T; (basic) y union { x } (insert x into y)
ins[x:T, y:*T]: *T; (basic) y with x added as head
inv[x:T->S, y: S]: $T; (basic) { z | z ∈ dom(x) and x(z) = y } (inverse)

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. % �

inv[x:T->S, y: $S]: $T; (utils) { z | z ∈ dom(x) and x(z) y } (inverse)
isect[x: $T, y: $T]: $T; (basic) x intersect y (intersection)
isint[x:num]: bool; (utils) is x an integer?
isint[x:str]: bool; (utils) is x an integer?
isnum[x:str]: bool; (basic) is x a num?
isreal[x:str]: bool; (basic) is x a real?
last [x:*T]: *T; (utils) the last member of x
lcat [x:num->T, y:num->T]: num->T; (adt) concatenation of lists x and y
lcons [x:num->T, y:T]: num->T; (adt) append y in front of list x
le[x:num, y:num]: bool; (utils) x <= y
le[x:real, y:real]: bool; (utils) x <= y
lempty [x:num->T]: bool; (adt) is x an empty list?
lfront [x:num->T]: num->T; (adt) list x without the last member
lhead [x:num->T]: T; (adt) first member of list x
list [x:T]: *T; (basic) a list containing all members of x
llast [x:num->T]: T; (adt) last member of list x
ln[x:real]: real; (basic) (x), natural logarithm
lnull: num->void; (adt) the empty list
lreverse [x:num->T]: num->T; (adt) reverse of list x
lsnoc [x:num->T, y:T]: num->T; (adt) append y at the back of list x
lt[x:num, y:num]: bool; (utils) x < y
lt[x:real, y:real]: bool; (utils) x < y
ltail [x:num->T]: num->T; (adt) list x without the first member
ltobag [x:num->T]: T->num; (adt) list x converted to a bag
match[x:str, y:str]: bool; (utils) is x head of y?
max[x: $num]: num; (utils) z : z ∈ x and forall {y ∈ x} z >= y, maximum

of set x
max[x:num, y:num]: num; (utils) x max y
max[x:T->num]: num; (utils) max(rng(x))
max[x: $real]: real; (utils) z : z ∈ x and forall {y ∈ x} z >= y, maximum

of set x
max[x:real, y:real]: real; (utils) x max y

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. ��

max[x:T->real]: real; (utils) max(rng(x))
max[x:*num]: num; (utils) the maximum in x
max[x:*real]: real; (utils) the maximum in x
minus[x:num]: num; (utils) -x
minus[x:real]: real; (utils) -x
min[$x:num]: num; (utils) z : z ∈ x and forall {y ∈ x} z <= y, minimum

of set x
min[x:num, y:num]: num; (utils) x min y
min[x:T->num]: num; (utils) min(rng(x))
min[x: $real]: real; (utils) z : z ∈ x and forall {y ∈ x} z <= y, minimum

of set x
min[x:real, y:real]: real; (utils) x min y
min[x:T->real]: real; (utils) min(rng(x))
min[x:*num]: num; (utils) the minimum in x
min[x:*real]: real; (utils) the minimum in x
mod[x:num, y:num]: num; (basic) x mod y
mod[x: $num, y:num]: num; (utils) { z mod y | z ∈ x }
mod[x:*num, y:num]: *num; (utils) x with each member replaced by its value

module y
mult[x:num, y:num]: num; (basic) x * y
mult[x: $num, y:num]: $num; (utils) { z * y | z ∈ x }
mult[x:real, y:real]: real; (basic) x * y
mult[x:real, y:real]: real; (utils) { z * y | z ∈ x }
mult[n:num, x:real]: real; (utils) real(n) * x
mult[x:real, n:num]: real; (utils) n * x
mult[x:*num, y:num]: *num; (utils) each member of x multiplied by y
mult[x:*real, y:real]: *real; (utils) each member of x multiplied by y
ne[x:T, y:T]: bool; (utils) x /= y, x not equal to y
nexp[m:real, seed:real]: real; (stat) a random number (negative exponential)
normal[m:real, v:real, seed:real]: real; (stat) a random number (normal)
not[x:bool]: bool; (utils) not x (logical not)

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. $ �

num[x:real]: num; (utils) real x converted to num with a certain
precision

num[x:real, y:num]: num; (basic) real x converted to num with precision y
num[x:str]: num; (basic) str x converted to num
numerator[x:num]: num; (basic) the numerator of a rational number
odd[n:num]: bool; (utils) is n odd?
or[x:bool, y:bool]: bool; (utils) x or y (logical or)
parse[y:str, symbols:str]: num -> str; (utils) divides the string y in a list of substrings e.g.

words that are separated by a delimiter in symbols
parse[y:str]: num -> str; (utils) divides the string y in a list of substrings e.g.

words that are separated by a space or by the
characters ,̀ : ; " ! ''

PERT_beta [l:real, u:real, e: real, seed:real] (stat) draw from a beta distribution with minimum l,
maximum u and expectation e.

pi1[x:T><S]: T; (basic) first element of x
pi1[x: $(T><S)]: $T; (utils) { y | y ∈ T and exists {z ∈ S} (y >< z) ∈ x }
pi2[x:T><S]: S; (basic) second element of x
pi2[x: $(T><S)]: $S; (utils) { z | z ∈ S and exists {y ∈ T} (y >< z) ∈ x }
pick[x: $T]: T; (basic) arbitrary (though deterministic) element from

x
poisson[m:real, seed:real]: real; (stat) a random number (poisson)
pos[x:num]: bool; (basic) x >= 0
pos[x:real]: bool; (utils) x >= 0
pow[x:num, y:num]: num; (utils) x^y
pow[x:real, y:real]: real; (utils) x^y
prod[x:T, y:S]: T><S; (basic) << x , y >> (pair of x and y)
random[seed:real]: real; (stat) a random number (between 0 and 1)
rdiv[x:num, y:num]: num; (basic) x / y
rdiv[x: $num, y:num]: num; (utils) { z / y | z ∈ x }
rdiv[x:real, y:real]: real; (basic) x / y
rdiv[x: $real, y:real]: real; (utils) { z / y | z ∈ x }
rdiv[n:num, x:real]: real; (utils) real(n) / x

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. # �

rdiv[x:real, n:num]: real; (utils) x / real(n)
rdiv[x:*num, y:num]: *num; (utils) each member of x divided by y
rdiv[x:*real, y:real]: *real; (utils) each member of x divided by y
real[x:num]: real; (basic) num x converted to real
real[x:str]: real; (basic) str x converted to real
rest[x: $T]: $T; (basic) x \ {pick(x) }
restrict[x:T->S, y: $T]: T->S; (utils) x | ̀y (restricted to)
rev[x:str]: str; (utils) string x in reverse order
reverse[x:*T]: *T; (utils) list x in reverse order
rint[a:real, b:real, seed:real]: real; (stat) a random number (between a and b)
rng[x:T->S]: $S; (utils) range of x
scan[x:str, y:str]: bool; (utils) does x occur in y?
scanrest[x:str, y:str]: str; (utils) tail of y, from first occurrence of x in y
sdiff[x: $T, y: $T]: $T; (basic) x \ y
set[x:T->bool]: $T; (basic) { y | y ∈ T and x(y) }
set[x:*T]: T; (basic) the set of members of x
sin[x:real]: real; (basic) (x)
size[x: $T]: num; (basic) sum {y ∈ x} 1, number of elements of x
size[x:*T]: num; (utils) number of members of x
sqrt[x:real]: real; (basic) square root of {x}
stobag [x: $T]: T->num; (adt) set x converted to a bag
str[x:num]: str; (basic) x converted to string
str[x:real]: str; (basic) x converted to string
strncmp[x:str, y:str, n:num]: bool; (utils) are the first n characters of strings x and y the

same?
stretch[x:num, y:num]: *num; (utils) list containing all members of { z | x <= z <=

y }
stretch[x:num, y:num]: $num; (utils) { z | x <= z <= y }
strlen[x:str]: num; (utils) length of string x
student[n:real, seed:real]: real; (stat) a random number (student)
sub[x:num, y:num]: num; (basic) x - y
sub[x: $num, y:num]: $num; (utils) { z - y | z ∈ x }

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. & �

sub[x:real, y:real]: real; (basic) x - y
sub[x: $real, y:real]: $real; (utils) { z - y | z ∈ x }
sub[x:*num, y:num]: *num; (utils) each member of x subtracted by y
sub[x:*real, y:real]: *real; (utils) each member of x subtracted by y
sub[n:num, x:real]: real; (utils) real(n) - x
sub[x:real, n:num]: real; (utils) x - real(n)
subbag [x:T->num, y:T->num]: bool; (adt) is bag x contained in y? (bag subset)
subset[x: $T, y: $T]: bool; (utils) x <= y
sum[x: $num]: num; (utils) sum {y ∈ x} y
sum[x:T->num]: num; (utils) sum {y ∈ dom(x)} x(y)
sum[x: $real]: real; (utils) sum {y ∈ x} y
sum[x:T->real]: real; (utils) sum {y ∈ dom(x)} x(y)
sum[x:*num]: num; (utils) the sum of all numbers in x
sum[x:*real]: real; (utils) the sum of all numbers in x
tail[x:str]: str; (basic) string x without first character
tail[x:*T]: *T; (basic) the tail of x
that[x:T->bool]: T; (utils) z : z ∈ dom(x) and x(z) and forall {y ∈

dom(x) and x(y)} y = z the only element in T that is
true

tomap[x:(T><S)]: T->S; (utils) type casting of set of pairs to mapping
topint[x:num]: num; (utils) smallest integer >= x
tovoid[x:T]: void; (utils) x converted to void
true: bool; (basic) truth
uniform[a:real, b:real, seed:real]: real; (stat) a random number (uniform)
union[x: $$T]: $T; (utils) Union_{y ∈ x} y, union of all elements of x
union[x: $T, y: $T]: $T; (basic) x union y
upd[x:T->S, y:T, z:S]: T->S; (basic) update x with x(y) = z
upd[x:[], y:[]]: []; (basic) update x according to y

5.1 Boolean functions

This section shows all boolean functions of the modules basic and utils.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. ' �

all[x:T->bool]: bool; (utils) forall {y ∈ dom(x)} x(y)
and[x:bool, y:bool]: bool; (utils) x and y (logical and)
any[x:T->bool]: bool; (utils) exists {y ∈ dom(x)} x(y)
cond[x:bool, y:T, z:T]: T; (basic) if x then y else z (condition)
elt[x:T, y: $T]: bool; (basic) x ∈ y
elt[x:T, y:*T]: bool; (basic) x occurs in y
eq[x:T, y:T]: bool; (basic) x = y
even[n:num]: bool; (utils) is n even?
false: bool; (basic) falsehood
ge[x:num, y:num]: bool; (utils) x >= y
ge[x:real, y:real]: bool; (utils) x >= y
gt[x:num, y:num]: bool; (utils) x > y
gt[x:real, y:real]: bool; (utils) x > y
iff[x:bool, y:bool]: bool; (utils) x == y (logical equivalence)
impl[x:bool, y:bool]: bool; (utils) x -> y (logical implication)
isint[x:num]: bool; (utils) is x an integer?
le[x:num, y:num]: bool; (utils) x <= y
le[x:real, y:real]: bool; (utils) x <= y
lt[x:num, y:num]: bool; (utils) x < y
lt[x:real, y:real]: bool; (utils) x < y
match[x:str, y:str]: bool; (utils) is x head of y?
ne[x:T, y:T]: bool; (utils) x /= y, x not equal to y
not[x:bool]: bool; (utils) not x (logical not)
odd[n:num]: bool; (utils) is n odd?
or[x:bool, y:bool]: bool; (utils) x or y (logical or)
pos[x:num]: bool; (basic) x >= 0
pos[x:real]: bool; (utils) x >= 0
scan[x:str, y:str]: bool; (utils) does x occur in y?
subset[x: $T, y: $T]: bool; (utils) x <= y
true: bool; (basic) truth

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. * �

5.2 Numerical functions

This section shows all functions with numericals (integers) as a result

type or as an argument in the modules basic and utils.

abs[x:num]: num; (utils) | x | (absolute value)
add[x:num, y:num]: num; (basic) x + y
add[x: $num, y:num]: num; (utils) { z + y | z x }
add[n:num, x:real]: real; (utils) real(n) + x
add[x:real, n:num]: real; (utils) x + n
add[x:*num, y:num]: *num; (utils) y added to each element of x
botint[x:num]: num; (utils) floor of x , largest integer less than/ equal to x
denominator[x:num]: num; (basic) the denominator of a rational number
div[x:num, y:num]: num; (basic) x div y (truncated)
even[n:num]: bool; (utils) is n even?
frc[x:num]: num; (utils) fractional part of x
gcd[x:num, y:num]: num; (basic) x y, greatest common divisor
ge[x:num, y:num]: bool; (utils) x >= y
gt[x:num, y:num]: bool; (utils) x > y
isint[x:num]: bool; (utils) is x an integer?
le[x:num, y:num]: bool; (utils) x <= y
lt[x:num, y:num]: bool; (utils) x < y
max[x: $num]: num; (utils) z : z ∈ x and forall {y ∈ x} z >= y, maximum

of set x
max[x:num, y:num]: num; (utils) x max y
max[x:T->num]: num; (utils) max(rng(x))
max[x:*num]: num; (utils) the maximum of x
min[x: $num]: num; (utils) z : z ∈ x and forall {y ∈ x} z <= y, minimum

of set x
min[x:num, y:num]: num; (utils) x min y
min[x:T->num]: num; (utils) min(rng(x))

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. . �

min[x:*num]: num; (utils) the minimum of x
minus[x:num]: num; (utils) -x
mod[x:num, y:num]: num; (basic) x mod y
mod[x: $num, y:num]: num; (utils) { z mod y | z ∈ x }
mod[x:*num, y:num]: *num; (utils) each element of x replaced by its value

modulo y
mult[x:num, y:num]: num; (basic) x * y
mult[x: $num, y:num]: num; (utils) { z * y | z ∈ x }
mult[n:num, x:real]: real; (utils) real(n) * x
mult[x:real, n:num]: real; (utils) n * x
mult[x:*num, n:num]: *num; (utils) each element of x multiplied by y
num[x:real]: num; (utils) real x converted to num with a certain

precision
num[x:real, y:num]: num; (basic) real x converted to num with precision y
num[x:str]: num; (basic) str x converted to num
numerator[x:num]: num; (basic) the numerator of a rational number
odd[n:num]: bool; (utils) is n odd?
pos[x:num]: bool; (basic) x >= 0
pow[x:num, y:num]: num; (utils) x^y
rdiv[x:num, y:num]: num; (basic) x / y
rdiv[x: $num, y:num]: num; (utils) { z / y | z ∈ x }
rdiv[n:num, x:real]: real; (utils) real(n) / x
rdiv[x:real, n:num]: real; (utils) x / real(n)
rdiv[x:*num, n:num]: *num; (utils) each element of x divided by y
real[x:num]: real; (basic) num x converted to real
size[x:*T]: num; (utils) number of elements in x
stretch[x:num, y:num]: *num; (utils) list containing all elements of { x ... y }
stretch[x:num, y:num]: $num; (utils) { z | x <= z <= y }
sub[x:num, y:num]: num; (basic) x - y
sub[x: $num, y:num]: $num; (utils) { z - y | z ∈ x }
sub[x:*num, y:num]: *num; (utils) each element of x subtracted with y
sum[x: $num]: num; (utils) sum {y ∈ x} y

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. / �

sum[x:T->num]: num; (utils) sum {y ∈ dom(x)} x(y)
sum[x:*num]: num; (utils) the sum of all members of x

5.3 Real functions

This section shows all functions with reals as a result type or as an argument in the modules basic
and utils.

add[x:real, y:real]: real; (basic) x + y
add[x: $real, y:real]: $real; (utils) { z + y | z ∈ x }
add[n:num, x:real]: real; (utils) real(n) + x
add[x:real, n:num]: real; (utils) x + n
add[x:*real, y:real]: *real; (utils) each element of x incremented by y
botint[x:real]: num; (basic) floor of x , largest integer <= x
cos[x:real]: real; (basic) (x)
exp[x:real]: real; (basic) e^x
frc[x:real]: real; (utils) fractional part of x
ge[x:real, y:real]: bool; (utils) x >= y
gt[x:real, y:real]: bool; (utils) x > y
le[x:real, y:real]: bool; (utils) x <= y
ln[x:real]: real; (basic) (x)
lt[x:real, y:real]: bool; (utils) x < y
max[x: $real]: real; (utils) z : z ∈ x and forall {y ∈ x} z >= y, maximum

of set x
max[x:real, y:real]: real; (utils) x max y
max[x:T->real]: real; (utils) max(rng(x))
max[x:*real]: real; (utils) the maximum of x
minus[x:real]: real; (utils) -x
min[x: $real]: real; (utils) z : z ∈ x and forall {y ∈ x} z <= y, minimum

of set x
min[x:real, y:real]: real; (utils) x min y

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

. ��

min[x:T->real]: real; (utils) min(rng(x))
min[x:*real]: real; (utils) the minimum of x
mult[x:real, y:real]: real; (basic) x * y
mult[x: $real, y:real]: real; (utils) { z * y | z ∈ x }
mult[n:num, x:real]: real; (utils) real(n) * x
mult[x:real, n:num]: real; (utils) n * x
mult[x:*real, y:real]: *real; (utils) each element of x multiplied by y
num[x:real]: num; (utils) real x converted to num
pos[x:real]: bool; (utils) x >= 0
pow[x:real, y:real]: real; (utils) x^y
rdiv[x:real, y:real]: real; (basic) x / y
rdiv[x: $real, y:real]: real; (utils) { z / y | z ∈ x }
rdiv[n:num, x:real]: real; (utils) real(n) / x
rdiv[x:real, n:num]: real; (utils) x / real(n)
rdiv[x:*real, y:real]: *real; (utils) each member of x divided by y
real[x:num]: real; (basic) num x converted to real
real[x:str]: real; (basic) str x converted to real
sin[x:real]: real; (basic) (x)
sqrt[x:real]: real; (basic) square root of {x}
str[x:real]: str; (basic) x converted to string
sub[x:real, y:real]: real; (basic) x - y
sub[x: $real, y:real]: real; (utils) { z - y | z ∈ x }
sub[n:num, x:real]: real; (utils) real(n) - x
sub[x:real, n:num]: real; (utils) x - real(n)
sub[x:*real, y:real]: *real; (utils) each member of x subtracted by y
sum[x: $real]: real; (utils) sum {y ∈ x} y
sum[x:T->real]: real; (utils) sum {y ∈ dom(x)} x(y)
sum[x:*real]: real; (utils) the sum of all members of x

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ % �

5.4 String functions

This section shows all string functions of the modules basic and utils.

cat[x:str, y:str]: str; (basic) x concatenated with y
chop[x:str, n:num]: str; (utils) string x reduced to its first n characters
head[x:str]: str; (basic) first char in string x
isint[x:str]: bool; (utils) is x an integer?
isnum[x:str]: bool; (basic) is x a num?
isreal[x:str]: bool; (basic) is x a real?
match[x:str, y:str]: bool; (utils) is x head of y?
num[x:str]: num; (basic) str x converted to num
parse[y:str, symbols:str]: num -> str; (utils) divides the string y in a list of substrings e.g.

words that are separated by a delimiter in symbols
parse[y:str]: num -> str; (utils) divides the string y in a list of substrings e.g.

words that are separated by a space or by the
characters , : ; " ! '

real[x:str]: real; (basic) str x converted to real
rev[x:str]: str; (utils) string x in reverse order
scan[x:str, y:str]: bool; (utils) does x occur in y?
scanrest[x:str, y:str]: str; (utils) tail of y, from first occurrence of x in y
str[x:num]: str; (basic) x converted to string
strncmp[x:str, y:str, n:num]: bool; (utils) are the first n characters of strings x and y the

same?
strlen[x:str]: num; (utils) length of string x
tail[x:str]: str; (basic) string x without first character

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ ��

5.5 Tuple functions

This section shows all tuple functions of the modules basic and utils.

upd[x:[], y:[]]: []; (basic) update x according to y

5.6 Product functions

This section shows all product functions of the modules basic and utils.

pi1[x:T><S]: T; (basic) first element of x
pi1[x: $(T><S)]: $T; (utils) { y | y ∈ T and exists {z ∈ S} (y >< z) ∈ x }
pi2[x:T><S]: S; (basic) second element of x
pi2[x: $(T><S)]: $S; (utils) { z | z ∈ S and exists {y ∈ T} (y >< z) ∈ x }
prod[x:T, y:S]: T><S; (basic) << x , y >> (pair of x and y)

5.7 Set functions

This section shows all set functions of the modules basic and utils

add[x: $num, y:num]: $num; (utils) { z + y | z ∈ x }
add[x: $real, y:real]: $real; (utils) { z + y | z ∈ x }
del[x:T, y: $T]: $T; (basic) y \ { x }, x is deleted from the set y
elt[x:T, y: $T]: bool; (basic) x ∈ y
ins[x:T, y: $T]: $T; (basic) y union { x } (insert x into y)
isect[x: $T, y: $T]: $T; (basic) x intersect y (intersection)
max[x: $num]: num; (utils) z : z ∈ x and forall {y ∈ x} z >= y, maximum

of set x

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ $ �

max[x: $real]: real; (utils) z : z ∈ x and forall {y ∈ x} z >= y, maximum
of set x

min[x: $num]: num; (utils) z : z ∈ x and forall {y ∈ x} z <= y, minimum
of set x

min[x: $real]: real; (utils) z : z ∈ x and forall {y ∈ x} z <= y, minimum
of set x

mod[x: $num, y:num]: num; (utils) { z mod y | z ∈ x }
mult[x: $num, y:num]: num; (utils) { z * y | z ∈ x }
mult[x: $real, y:real]: real; (utils) { z * y | z ∈ x }
pi1[x: $(T><S)]: T; (utils) { y | y ∈ T and exists {z ∈ S} (y >< z) ∈ x }
pi2[x: $(T><S)]: S; (utils) { z | z ∈ S and exists {y T} (y >< z) ∈ x }
pick[x: $T]: T; (basic) arbitrary (though deterministic) element from

x
rdiv[x: $num, y:num]: num; (utils) { z / y | z ∈ x }
rdiv[x: $real, y:real]: real; (utils) { z / y | z ∈ x }
rest[x: $T]: $T; (basic) x \ {pick(x)}
sdiff[x: $T, y: $T]: $T; (basic) x \ y
size[x: $T]: num; (basic) sum {y x} 1, number of elements of x
sub[x: $num, y:num]: num; (utils) { z - y | z ∈ x }
sub[x: $real, y:real]: real; (utils) { z - y | z ∈ x }
subset[x: $T, y: $T]: bool; (utils) x <= y
sum[x: $num]: num; (utils) sum {y ∈ x} y
sum[x: $real]: real; (utils) sum {y ∈ x} y
union[x: $$T]: T; (utils) Union_{y ∈ x} y, union of all elements of x
union[x: $T, y: $T]: T; (basic) x union y

5.8 Statistical functions

In these functions, seed should be in the open interval (0,1), i.e., 0 < seed < 1. It can be obtained by
using random.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ # �

bernouilli [p:real, seed:real]: real (stat) draw from a bernouilli distribution with
expectation p; 0 <= p <= 1

binomial [n:real, p:real, seed:real]: real (stat) draw from a binomial distribution with
expectation p*n; 0 <= p <= 1 and n should be a non-
negative integer

chisq [n:real, seed:real]: real (stat) draw from a X^2 distribution with n degrees of
freedom; n should be a non-negative integer

erlang [m:real, k:real, seed:real]: real (stat) draw from an erlang distribution with
expectation k/m and variance k/m^2; k should be a
positive integer and m > 0

nexp [m:real, seed:real]: real (stat) draw from a negative exponential distribution
with expectation 1/m; m > 0

gamma[l:real, k: real, seed:real] (stat) draw from a gamma distribution with mean l/k
and variance l/k^2.

normal [m:real, v:real, seed:real]: real (stat) draw from a normal distribution with
expectation m and variance v; v >= 0

PERT_beta [l:real, u:real, e: real, seed:real] (stat) draw from a beta distribution with minimum l,
maximum u and expectation e.

poisson [m:real, seed:real]: real (stat) draw from a distribution of a poisson process
with intensity m; m should be a non-negative integer

random [seed:real]: real (stat) draw from a uniform distribution on the open
interval (0,1)

rint [a:real, b:real, seed:real]: real (stat) closed interval [a,b]. The values of a and b
should be integer and a <= b.

student [n:real, seed:real]: real (stat) draw from a t-distribution with n degrees of
freedom. The value of n should be a positive integer.

uniform [a:real, b:real, seed:real]: real (stat) draw from a uniform distribution on the open
interval (a,b), a < b.

5.9 List functions

This section shows all list functions of the modules basic and utils.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ & �

add[x:*num, y:num]: *num; (utils) x with each member incremented by y
add[x:*real, y:real]: *real; (utils) x with each member incremented by y
cat[x:*T, y:*T]: *T; (basic) the concatenation of x and y
elt[x:T, y:*T]: bool; (utils) x occurs in y
front[x:*T]: *T; (utils) x with the last member removed
head[x:*T]: T; (basic) the first member of x
ins[x:T, y:*T]: *T; (basic) y with x added as head
last [x:*T]: *T; (utils) the last member of x
list [x:T]: *T; (basic) a list containing all members of x
max[x:*num]: num; (utils) the maximum in x
max[x:*real]: real; (utils) the maximum in x
min[x:*num]: num; (utils) the minimum in x
min[x:*real]: real; (utils) the minimum in x
mod[x:*num, y:num]: *num; (utils) x with each member replaced by its value

module y
mult[x:*num, y:num]: *num; (utils) each member of x multiplied by y
mult[x:*real, y:real]: *real; (utils) each member of x multiplied by y
rdiv[x:*num, y:num]: *num; (utils) each member of x divided by y
rdiv[x:*real, y:real]: *real; (utils) each member of x divided by y
reverse[x:*T]: *T; (utils) list x in reverse order
set[x:*T]: T; (basic) the set of members of x
size[x:*T]: num; (utils) number of members of x
stretch[x:num, y:num]: *num; (utils) list containing all members of { z | x <= z <=

y }
sub[x:*num, y:num]: *num; (utils) each member of x subtracted by y
sub[x:*real, y:real]: *real; (utils) each member of x subtracted by y
sum[x:*num]: num; (utils) the sum of all numbers in x
sum[x:*real]: real; (utils) the sum of all numbers in x
tail[x:*T]: *T; (basic) the tail of x

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ ' �

5.10 Mapping functions

This section shows all mapping functions.

all[x:T->bool]: bool; (utils) forall {y ∈ dom(x)} x(y)
any[x:T->bool]: bool; (utils) exists {y ∈ dom(x)} x(y)
apply[x:T->S, y:T]: S; (basic) x(y) (mapping application)
apply[x:T->S, y: $T]: $S; (utils) { x(z) | z ∈ y }
dom[x:T->S]: $T; (utils) domain of x
fcomp[x:T->S, y:S->R]: T->R; (utils) x o y, function composition
frest[x:S->T]: S->T; (utils) x \ {pick(x)}, x without the element pick(x)
inv[x:T->S, y:S]: $T; (basic) { z | z ∈ T and x(z) = y } (inverse)
inv[x:T->S, y: $S]: $T; (utils) { z | z ∈ T and x(z) ∈ y } (inverse)
max[x:T->num]: num; (utils) max(rng(x))
max[x:T->real]: real; (utils) max(rng(x))
min[x:T->num]: num; (utils) min(rng(x))
min[x:T->real]: real; (utils) min(rng(x))
restrict[x:T->S, y:T]: T->S; (utils) x | ̀y (restricted to)
rng[x:T->S]: $S; (utils) range of x
set[x:T->bool]: $T; (basic) { y | y ∈ T and x(y) }
sum[x:T->num]: num; (utils) sum {y ∈ dom(x)} x(y)
sum[x:T->real]: real; (utils) sum {y ∈ dom(x)} x(y)
that[x:T->bool]: T; (utils) z : z ∈ dom(x) and x(z) and forall {y ∈

dom(x) and x(y)} y = z the only element in T that is
true

tomap[x:(T><S)]: T->S; (utils) type casting of set of pairs to mapping
upd[x:T->S, y:T, z:S]: T->S; (basic) update x with x(y) = z

5.11 Void functions

This section shows all void functions.
abort: void; (basic) value to denote abortion

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ * �

tovoid[x:T]: void; (utils) x converted to void

5.12 Array functions

This section shows the array functions of the module adt.

adel [x:num->T, y:num]: num->T; (adt) array x without the y'th member
aelement [x:num->T, y:num]: T; (adt) x(y), value of the y'th member of array x
aempty [x:num->T]: bool; (adt) is x an empty array?
aindex [x:num->T, y:T]: $num; (adt) {i:dom(x) | x(i)=y}
ains [x:num->T, y:num, z:T]: num->T; (adt) array x with (y,z) inserted
ains [x:num->T, y:num, z:num->T]: num->T; (adt) array x with array z inserted at position y
anull num -> Void; (adt) the empty array.
asplit [x:num->T, y:num]: (num->T)><(num->T); (adt) split array x at index y
aswap [x:num->T, y:num, z:num]: num->T; (adt) array x with values at y and z interchanged

5.13 List functions

This section shows the list functions of the module adt.

lcat [x:num->T, y:num->T]: num->T; (adt) concatenation of lists x and y
lcons [x:num->T, y:T]: num->T; (adt) append y in front of list x
lempty [x:num->T]: bool; (adt) is x an empty list?
lfront [x:num->T]: num->T; (adt) list x without the last member
lhead [x:num->T]: T; (adt) first member of list x
lnull: num->void; (adt) the empty list
lreverse [x:num->T]: num->T; (adt) reverse of list x
lsnoc [x:num->T, y:T]: num->T; (adt) append y at the back of list x
ltail [x:num->T]: num->T; (adt) list x without the first member
ltobag [x:num->T]: T->num; (adt) list x converted to a bag

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ . �

5.14 Bag functions

This section shows the bag functions of the module adt.

atobag [x:num->T]: T->num; (adt) array x converted to a bag
badd [x:T->num, y: $T]: T->num; (adt) bag x with all elements of y added
badd [x: $$T]: T->num; (adt) bag of all elements occurring in the sets in x
bdel [x:T->num, y:T]: T->num; (adt) bag x with one element y deleted
bdiff [x:T->num, y:T->num]: T->num; (adt) bag x minus all elements of bag y
bempty [x:T->num]: bool; (adt) is x an empty bag?
bins [x:T->num, y:T]: T->num; (adt) bag x with element y inserted
bisect [x:T->num, y:T->num]: T->num; (adt) biggest bag both contained in x and y (bag

intersection)
bjoin [x:T->num, y:T->num]: T->num; (adt) bag of all elements of x and y (join)
bjoin [x: $(T->num)]: T->num; (adt) bag of all elements of all bags in x (join)
bmax [x:num->num]: num; (adt) maximum (greatest element) of bag x
bmin [x:num->num]: num; (adt) minimum (smallest element) of bag x
bnull: void->num; (adt) the empty bag
bocc [x:T->num, y:T]: num; (adt) number of times y occurs in bag x
bpick [x:T->num]: T; (adt) an arbitrary (though deterministic) element

from bag x
bproj [x:T->num, y: $T]: T->num; (adt) projection of bag x onto y
brest [x:T->num]: T->num; (adt) bag x without the element bpick(x)
bsize [x:T->num]: num; (adt) number of elements in bag x
bsum [x:num->num]: num; (adt) sum of all elements of bag x
btoset [x:T->num]: $T; (adt) bag x converted to a set
bunion [x:T->num, y:T->num]: T->num; (adt) smallest bag containing x and y (bag union)
bunion [x: $(T->num)]: T->num; (adt) smallest bag containing all bags of x (bag

union)
ltobag [x:num->T]: T->num; (adt) list x converted to a bag
stobag [x: $T]: T->num; (adt) set x converted to a bag
subbag [x:T->num, y:T->num]: bool; (adt) is bag x contained in y? (bag subset)

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ / �

6. Bibliography

References For a good introduction to the modelling of systems and processes in terms

of Petri nets, the user is referred to [AAKea96] and [AH97]. Both books are
in Dutch. Other goods introductions to Petri-net modelling are given in:
[Pet81], [Jen92], and [Rei85]. The tools described in [Pal97] and [SL96]
export script files, which can be imported by ExSpect. For more background
information on modelling and simulation with ExSpect, the user is referred
to [Aal94a], [Aal94b], [Aal96a], [Aal96b], [DE95], [Hee94], [Ros90], and
[JR91].

[AAKea96] W.M.P. van der Aalst, A. Aarts, H. Koppelman, and R.V. Schuwer et al.

Informatiesystemen: Modelleren en Specificeren. Open Universiteit,
Heerlen, 1996 (in Dutch).

[Aal94a] W.M.P. van der Aalst. Procesmodelleren met behulp van Petri-netten.

Informatie, 36(4):244--252, 1994 (in Dutch).

[Aal94b] W.M.P. van der Aalst. Putting Petri nets to work in industry. Computers in

Industry, 25(1):45--54, 1994.

[Aal96a] W.M.P. van der Aalst. Petri-net-based Workflow Management Software. In

A. Sheth, editor, Proceedings of the NFS Workshop on Workflow and
Process Automation in Information Systems, pages 114--118, Athens,
Georgia, May 1996.

[Aal96b] W.M.P. van der Aalst. Three Good reasons for Using a Petri-net-based

Workflow Management System. In S. Navathe and T. Wakayama, editors,
Proceedings of the International Working Conference on Information and
Process Integration in Enterprises (IPIC'96), pages 179--201, Camebridge,
Massachusetts, Nov 1996.

�����������	

����� � � � ��� � � � �� 	�
� �� ��������	��� �� �� 	�
�� �� �
� � � ��� � � � ��� �� � � � � �

�������� �

� � � � �� � � � � ��

/ ��

[AH97] W.M.P. van der Aalst and K.M. van Hee. Workflow Management:
Modellen, Methoden en Systemen (in Dutch). Academic Service,
Schoonhoven, 1997 (in Dutch).

[DE95] J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge

tracts in theoretical computer science. Cambridge University Press,
Cambridge, 1995.

[Hee94] K.M. van Hee. Information System Engineering: a Formal Approach.

Cambridge University Press, 1994.

[Jen92] K. Jensen. Coloured Petri Nets. Basic concepts, analysis methods and

practical use. EATCS monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, 1992.

[JR91] K. Jensen and G. Rozenberg, editors. High-level Petri Nets: Theory and

Application. Springer-Verlag, Berlin, 1991.

[Pal97] Pallas Athena. Protos User Manual. Pallas Athena BV, Plasmolen, The

Netherlands, 1997.

[Pet81] J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall,

Englewood Cliffs, 1981.

[Rei85] W. Reisig. Petri nets: an introduction, volume 4 of Monographs in

theoretical computer science: an EATCS series. Springer-Verlag, Berlin,
1985.

[Ros90] S.M. Ross. A course in simulation. Macmillan, New York, 1990.

[SL96] Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim,

Germany, 1996.

